how many solution

Algebra Level 3

Find the sum of all the values of x x satisfying

x + x 2 = 3 x . \large \lfloor x + x^2 \rfloor = 3x.


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 12, 2020

Note that the LHS x + x 2 \lfloor x + x^2 \rfloor is an integer, the RHS must also be an integer. Therefore x x can only be of the form n 3 \frac n3 , where n n is an integer. Since x 2 + x = ( x + 1 2 ) 2 1 4 x^2 + x = \left(x+\frac 12 \right)^2 - \frac 14 , x 2 + x 1 4 \implies x^2 + x \ge - \frac 14 and x + x 2 1 \lfloor x + x^2 \rfloor \ge - 1 . Therefore the smallest possible RHS n = 1 n = -1 .

n = 1 x + x 2 = 1 3 1 9 = 1 = LHS, acceptable n = 0 x + x 2 = 0 + 0 = 0 = LHS, acceptable n = 1 x + x 2 = 1 3 + 1 9 = 0 LHS, unacceptable n = 2 x + x 2 = 2 3 + 4 9 = 1 LHS, unacceptable n = 3 x + x 2 = 1 + 1 = 2 LHS, unacceptable n = 4 x + x 2 = 4 3 + 16 9 = 3 LHS, unacceptable n = 5 x + x 2 = 5 3 + 25 9 = 4 LHS, unacceptable n = 6 x + x 2 = 2 + 4 = 6 = LHS, acceptable n = 7 x + x 2 = 7 3 49 9 = 7 = LHS, acceptable \begin{array} {lll} n=-1 & \implies \lfloor x + x^2 \rfloor = \left \lfloor -\frac 13 - \frac 19 \right \rfloor = - 1 & \blue{= \text {LHS, acceptable}} \\ n = 0 & \implies \lfloor x + x^2 \rfloor = \left \lfloor 0 + 0 \right \rfloor = 0 & \blue{= \text {LHS, acceptable}} \\ n = 1 & \implies \lfloor x + x^2 \rfloor = \left \lfloor \frac 13 + \frac 19 \right \rfloor = 0 & \red{\ne \text {LHS, unacceptable}} \\ n = 2 & \implies \lfloor x + x^2 \rfloor = \left \lfloor \frac 23 + \frac 49 \right \rfloor = 1 & \red{\ne \text {LHS, unacceptable}} \\ n = 3 & \implies \lfloor x + x^2 \rfloor = \left \lfloor 1 + 1 \right \rfloor = 2 & \red{\ne \text {LHS, unacceptable}} \\ n = 4 & \implies \lfloor x + x^2 \rfloor = \left \lfloor \frac 43 + \frac {16}9 \right \rfloor = 3 & \red{\ne \text {LHS, unacceptable}} \\ n = 5 & \implies \lfloor x + x^2 \rfloor = \left \lfloor \frac 53 + \frac {25}9 \right \rfloor = 4 & \red{\ne \text {LHS, unacceptable}} \\ n = 6 & \implies \lfloor x + x^2 \rfloor = \left \lfloor 2 + 4 \right \rfloor = 6 & \blue{= \text {LHS, acceptable}} \\ n= 7 & \implies \lfloor x + x^2 \rfloor = \left \lfloor \frac 73 - \frac {49}9 \right \rfloor = 7 & \blue{= \text {LHS, acceptable}} \end{array}

For n 8 n \ge 8 , LHS > RHS \text {LHS > RHS} and there is no solution. Therefore the sum of solutions is 1 3 + 0 + 2 + 7 3 = 4 -\frac 13 + 0 + 2 + \frac 73 = \boxed 4 .

@Chew-Seong Cheong , your last line has a LaTeX \LaTeX typo

Mahdi Raza - 1 year ago
Qweros Bistoros
Jun 12, 2020
  • 3 x 3x is integer
  • if x > 3 x>3 then x + x 2 = x ( x + 1 ) > 3 ( x + 1 ) x+x^2=x(x+1)>3(x+1) so no solution there.
  • if x < 1 x<-1 then LHS is non-negative but RHS negative Only need to check x=k/3 where k is integer between -3 and 9

Solutions are 1 3 , 0 , 2 , 7 3 -\frac{1}{3}, 0, 2, \frac{7}{3}

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...