How many solutions?

Find the number of integer solutions ( x , y ) (x,y) satisfying ( x + 2 ) 4 x 4 = y 3 (x+2)^4 - x^4 = y^3 .

Five solutions No solution Two solutions One solution

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Bloons Qoth
Jun 19, 2016
  • ( x + 2 ) 4 x 4 = y 3 {(x+2)^4-x^4=y^3}
  • 8 x 3 + 24 x 2 + 32 x + 16 = y 3 {8x^3+24x^2+32x+16=y^3}
  • 8 ( x 3 + 3 x 2 + 4 x + 2 ) = y 3 {8(x^3+3x^2+4x+2)=y^3}
  • If y = 2 n y=2n .........................................................................substitude
  • x 3 + 3 x 2 + 4 x + 2 = n 3 {x^3+3x^2+4x+2=n^3}
  • If x 0 x \geq0
  • ( x + 1 ) 3 < ( x 3 + 3 x 2 + 4 x + 2 = n 3 ) < ( x + 2 ) 3 3 {\sqrt[3]{ (x+1)^3<(x^3+3x^2+4x+2=n^3)<(x+2)^3} }
  • x + 1 < n < x + 2 x+1<n<x+2
  • By contradiction, no Z \mathbb{Z} solutions exists for n n
  • Therefore, x 0 x \ngeq 0
  • .
  • If x 1 x \leq -1
  • We assume ( 1 , 0 ) (-1,0) is the solution
  • .
  • If x 2 x \leq -2
  • k , t Z k, t \in \mathbb{Z}
  • ( k + 4 ) 4 k 4 = t 3 {(k+4)^4-k^4=t^3}
  • k 2 = k 2 , t 2 = t {k_2=-k-2}, {t_2=-t} ...............................................substitude
  • k 2 4 ( k 2 + 2 ) 4 = t 2 3 {k_2^4-(k_2+2)^4=t_2^3}
  • Therefore, x 2 x\nleq -2
  • .
  • So ( 1 , 0 ) (-1,0) is the only solution \blacksquare

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...