How Many Solutions 2

20 x 9 + 117 y 9 = 4269 20x^{9} + 117y^{9} = 4269 How many integer solutions to the above equation exist?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Mark Hennings
Apr 10, 2019

Since 20 x 9 = 4269 117 y 9 20x^9 = 4269 - 117y^9 is a multiple of 3 3 , it follows that x x is a multiple of 3 3 . But this implies that 4269 = 20 x 9 + 117 y 9 4269 = 20x^9 + 117y^9 is a multiple of 9 9 , which is not the case. Thus there are no solutions.

William Allen
Apr 10, 2019

a 18 1 ( m o d 19 ) x 9 { 1 , 0 , 1 } , y 9 { 1 , 0 , 1 } when looking mod 19 Looking mod 19 gives x 9 + 3 y 9 13 ( m o d 19 ) and x 9 + 3 y 9 { 4 , 3 , 2 , 1 , 0 , 1 , 2 , 3 , 4 } 13 { 4 , 3 , 2 , 1 , 0 , 1 , 2 , 3 , 4 } so there are no integer solutions. a^{18} \equiv 1 \pmod{19} \implies x^{9} \in \left\{-1, 0, 1 \right\}, y^{9} \in \left\{-1, 0, 1 \right\} \text{ when looking mod 19} \\ \text{ Looking mod 19 gives } x^{9} + 3y^{9} \equiv 13 \pmod{19} \text{ and } x^{9} + 3y^{9} \in \left\{-4, -3, -2, -1, 0, 1, 2, 3, 4 \right\} \\ 13\notin \left\{-4, -3, -2, -1, 0, 1, 2, 3, 4 \right\} \text{ so there are no integer solutions. }

Aaghaz Mahajan
Apr 10, 2019

@William Allen Instead of looking mod 19 \operatorname{mod}19 we can look mod 9 \operatorname{mod}9 to make things easier........

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...