Find the complex solutions

Algebra Level 5

{ x 5 + y 5 = 33 x + y = 3 \large \begin{cases} {x^5 + y^5=33} \\ {x+y=3 } \end{cases}

If the system of equations above has two real and two complex solutions, what is the value of x 2 + y 2 x^2+y^2 when x , y x,y are both not real numbers?

Note that a + b 1 a + b\sqrt{-1} is a complex number where a , b a,b are real numbers.


The answer is -5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

( x + y ) 5 = x 5 + 5 x 4 y + 10 x 3 y 2 + 10 x 2 y 3 + 5 x y 4 + y 5 3 5 = 33 + 5 x y ( x 3 + y 3 ) + 10 x 2 y 2 ( x + y ) 243 = 33 + 5 x y ( x + y ) ( x 2 + y 2 x y ) + 30 x 2 y 2 210 = 15 x y ( ( x + y ) 2 3 x y ) + 30 x 2 y 2 70 = 5 x y ( 9 3 x y ) + 10 x 2 y 2 70 = 45 x y 5 x 2 y 2 \begin{aligned} (x+y)^5 & = x^5+5x^4y+10x^3y^2+10x^2y^3+ 5 x y^4 +y^5 \\ 3^5 & = 33 +5xy\left(x^3+y^3\right) + 10x^2 y^2 \left( x+ y \right) \\ 243 & = 33 + 5xy (x+y) \left(x^2+y^2-xy \right) + 30x^2 y^2 \\ 210 & = 15xy\left((x+y)^2-3xy \right) + 30x^2 y^2 \\ 70 & = 5xy \left( 9 -3xy \right) + 10 x^2 y^2 \\ 70 & = 45xy - 5 x^2 y^2 \end{aligned}

x 2 y 2 9 x y + 14 = 0 ( x y 2 ) ( x y 7 ) = 0 x y = 2 or 7 \begin{aligned} \Rightarrow x^2y^2 - 9xy + 14 & = 0 \\ (xy-2)(xy-7) & = 0 \\ \Rightarrow xy & = 2 \text{ or } 7 \end{aligned}

Since x + y = 3 y = 3 x x y = x ( 3 x ) = 3 x x 2 x+y=3 \quad \Rightarrow y = 3-x\quad \Rightarrow xy = x(3-x) = 3x-x^2

3 x x 2 = { 2 x 2 3 x + 2 = ( x 1 ) ( x 2 ) = 0 x, y are real 7 x 2 3 x + 7 = 0 x, y are not real 3x-x^2 = \begin{cases} 2 &\Rightarrow x^2 - 3x + 2 = (x-1)(x-2) = 0 & \text{x, y are real} \\ 7 &\Rightarrow x^2 - 3x + 7 = 0 & \text{x, y are not real} \end{cases}

When x y = 7 x 2 + y 2 = ( x + y ) 2 2 x y = 9 14 = 5 xy = 7\quad \Rightarrow x^2+y^2 = (x+y)^2 - 2xy = 9 - 14 = \boxed{-5}

Moderator note:

This approach can be motivated by the idea of Newtons Sum, in which we only need the value of x y xy , x + y x+y and x n + y n x^n + y^n can be determined from the other 2.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...