How many solutions ?

Algebra Level 2

A system of equations is given by

{ ( r + 1 ) 2 = ( x 2 ) 2 + y 2 ( r + 2 ) 2 = ( x + 1 ) 2 + y 2 ( 3 r ) 2 = x 2 + y 2 \begin{cases} (r + 1)^2 = (x- 2)^2 + y^2 \\ (r + 2)^2 = (x + 1)^2 + y^2 \\ (3 - r)^2 = x^2 + y^2 \end{cases}

How many solutions does the above system have?

3 1 2 0 4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 12, 2020

The system of equations can be rewritten as:

{ ( x 2 ) 2 + y 2 = ( r + 1 ) 2 . . . ( 1 ) ( x + 1 ) 2 + y 2 = ( r + 2 ) 2 . . . ( 2 ) x 2 + y 2 = ( 3 r ) 2 . . . ( 3 ) \begin{cases} \begin{aligned} (x-2)^2 + y^2 & = (r+1)^2 & ...(1) \\ (x+1)^2 + y^2 & = (r+2)^2 & ...(2) \\ x^2 + y^2 & = (3-r)^2 & ...(3) \end{aligned} \end{cases}

( 2 ) ( 1 ) : 6 x 3 = 2 r + 3 r = 3 x 3 . . . ( 4 ) \begin{aligned} (2)-(1): \quad 6x - 3 & = 2r + 3 \\ \implies r & = 3x - 3 & ...(4) \end{aligned}

( 2 ) ( 3 ) : 2 x + 1 = 10 r 5 5 r = x + 3 . . . ( 5 ) \begin{aligned} (2)-(3): \quad 2x +1 & = 10r-5 \\ \implies 5r & = x + 3 & ...(5) \end{aligned}

From 5 × ( 5 ) ( 4 ) : 14 r = 12 r = 6 7 5\times(5)-(4): \ 14 r = 12 \implies r = \dfrac 67 . We note that the system of equations are circles as follows:

{ ( x 2 ) 2 + y 2 = ( 13 7 ) 2 Center at (2,0) and radius of 13 7 ( x + 1 ) 2 + y 2 = ( 20 7 ) 2 Center at (-1,0) and radius of 20 7 x 2 + y 2 = ( 15 7 ) 2 Center at (0,0) and radius of 15 7 \begin{cases} \begin{aligned} (x-2)^2 + y^2 & = \left(\frac {13}7 \right)^2 & \small \blue{\text{Center at (2,0) and radius of } \frac {13}7} \\ (x+1)^2 + y^2 & = \left(\frac {20}7 \right)^2 & \small \blue{\text{Center at (-1,0) and radius of } \frac {20}7} \\ x^2 + y^2 & = \left(\frac {15}7 \right)^2 & \small \blue{\text{Center at (0,0) and radius of } \frac {15}7} \end{aligned} \end{cases}

Plotting the three circles, we note that there are only 2 \boxed 2 solutions at ( r , x , y ) = ( 6 7 , 9 7 , ± 12 7 ) (r,x,y) = \left(\dfrac 67, \dfrac 97, \pm \dfrac {12}7\right) .

Subtracting the first equation from the second, we get r = 3 x 3 r=3x-3 . Subtracting the third equation from the first, we get 2 r = 3 x 2r=3-x . From these two, we get x = 9 7 , r = 6 7 x=\dfrac{9}{7}, r=\dfrac{6}{7} . Substituting in the third equation we get y = ± 12 7 y=\pm {\dfrac{12}{7}} . Hence there are 2 \boxed 2 equations in all, viz. x = 9 7 , y = 12 7 , r = 6 7 x=\dfrac{9}{7}, y=\dfrac{12}{7}, r=\dfrac{6}{7} and x = 9 7 , y = 12 7 , r = 6 7 x=\dfrac{9}{7}, y=-\dfrac{12}{7}, r=\dfrac{6}{7} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...