How many triangles?

( a + b ) 2 + c = 415 \large (a + b)^2 + c = 415

We are given that a , b , c a,b,c are positive integers satisfying the equation above.

How many distinct ordered triplets ( a , b , c ) (a, b, c) that satisfy the equation above also form the sides of a non-degenerate triangle?


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Stewart Gordon
May 29, 2015

For ( a , b , c ) (a, b, c) to be a triangle, we require that a + b > c b + c > a c + a > b a + b > c \\ b + c > a \\ c + a > b \\ From the original equation, for c c to be positive, necessarily a + b 20 a + b \leq 20 . But if a + b 19 a + b \leq 19 , then c > = 39 c >= 39 , thereby contradicting a + b > c a + b > c . Therefore, since a a and b b are integers, we deduce a + b = 20 a + b = 20 and c = 15 c = 15 .

From this, b + c > a 20 a + 15 > a 35 > 2 a a 17 b + c > a \\ \Rightarrow 20 - a + 15 > a \\ \Rightarrow 35 > 2a \\ \Rightarrow a \leq 17 \\ and similarly c + a > b 15 + a > 20 a 2 a > 5 a 3 c + a > b \\ \Rightarrow 15 + a > 20 - a \\ \Rightarrow 2a > 5 \\ \Rightarrow a \geq 3 \\ In the same way, 3 b 17 3 \leq b \leq 17 . The relation a + b = 20 a + b = 20 puts these values of a a and b b in one-to-one correspondence with each other. Therefore, there are 15 possible solutions.

( a + b ) 2 + c = 415 c = 415 ( a + b ) 2 S o i t i s c l e a r t h a t 0 ( a + b ) 20 [ a s c i s a p o s i t i v e i n t e g e r ] C a s e A : N o w , i f ( a + b ) = 20 t h e n c = 415 20 2 = 15 F o r f o r m i n g t h e s i d e s o f a n o n d e g e n e r a t e t r i a n g l e , t h e s u m m a t i o n o f a n y t w o n u m b e r s o f t h e t r i p l e t ( a , b , c ) m u s t b e g r e a t e r t h a n t h e t h i r d o n e . M a i n t a i n i n g t h i s c o n d i t i o n , t h e c o r r e c t t r i p l e t s a r e ( 3 , 17 , 15 ) , ( 4 , 16 , 15 ) , ( 5 , 15 , 15 ) , ( 6 , 14 , 15 ) , ( 7 , 13 , 15 ) , ( 8 , 12 , 15 ) , ( 9 , 11 , 15 ) , ( 10 , 10 , 15 ) , ( 11 , 9 , 15 ) , ( 12 , 8 , 15 ) , ( 13 , 7 , 15 ) , ( 14 , 6 , 15 ) , ( 15 , 5 , 15 ) , ( 16 , 4 , 15 ) , ( 17 , 3 , 15 ) t o t a l 15 t r i p l e t s . C a s e B : i f ( a + b ) = 19 , c = 415 19 2 = 54. S o , i t i s o b v i o u s t h a t i f ( a + b ) 19 , c 54 i n t h i s c a s e c b e c o m e s l a r g e r t h a n ( a + b ) , a n d s o n o n o n d e g e n e r a t e t r i a n g l e c a n b e f o r m e d h a v i n g s i d e s a , b , c . S o t h e n u m b e r o f d i s t i n c t o r d e r e d t r i p l e t s i s 15 { \quad \quad \quad \quad (a+b) }^{ 2 }+c=415\\ \Longrightarrow \quad c=415-{ (a+b) }^{ 2 }\\ So\quad it\quad is\quad clear\quad that\quad 0\le (a+b)\le 20\quad [as\quad c\quad is\quad a\quad positive\quad integer]\\ Case\quad A:\quad Now,if\quad (a+b)=20\quad then\quad c=415-{ 20 }^{ 2 }=15\\ For\quad forming\quad the\quad sides\quad of\quad a\quad non-degenerate\quad triangle,the\quad summation\quad of\quad any\quad two\quad numbers\quad of\quad the\quad triplet\quad (a,b,c)\quad must\quad be\quad greater\quad than\quad the\quad third\quad one.\\ Maintaining\quad this\quad condition,\quad the\quad correct\quad triplets\quad are\quad (3,17,15),(4,16,15),(5,15,15),(6,14,15),(7,13,15),(8,12,15),(9,11,15),(10,10,15),(11,9,15),(12,8,15),(13,7,15),(14,6,15),(15,5,15),(16,4,15),(17,3,15)\quad total\quad 15\quad triplets.\\ Case\quad B:\quad if\quad (a+b)=19,\quad c=415-{ 19 }^{ 2 }=54.\\ So,it\quad is\quad obvious\quad that\quad if\quad (a+b)\le 19,\quad c\ge 54\\ in\quad this\quad case\quad c\quad becomes\quad larger\quad than\quad (a+b),\quad and\quad so\quad no\quad non-degenerate\quad triangle\quad can\quad be\quad formed\quad having\quad sides\quad a,b,c.\\ So\quad the\quad number\quad of\quad distinct\quad ordered\quad triplets\quad is\quad \boxed{15}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...