( a + b ) 2 + c = 4 1 5
We are given that a , b , c are positive integers satisfying the equation above.
How many distinct ordered triplets ( a , b , c ) that satisfy the equation above also form the sides of a non-degenerate triangle?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
( a + b ) 2 + c = 4 1 5 ⟹ c = 4 1 5 − ( a + b ) 2 S o i t i s c l e a r t h a t 0 ≤ ( a + b ) ≤ 2 0 [ a s c i s a p o s i t i v e i n t e g e r ] C a s e A : N o w , i f ( a + b ) = 2 0 t h e n c = 4 1 5 − 2 0 2 = 1 5 F o r f o r m i n g t h e s i d e s o f a n o n − d e g e n e r a t e t r i a n g l e , t h e s u m m a t i o n o f a n y t w o n u m b e r s o f t h e t r i p l e t ( a , b , c ) m u s t b e g r e a t e r t h a n t h e t h i r d o n e . M a i n t a i n i n g t h i s c o n d i t i o n , t h e c o r r e c t t r i p l e t s a r e ( 3 , 1 7 , 1 5 ) , ( 4 , 1 6 , 1 5 ) , ( 5 , 1 5 , 1 5 ) , ( 6 , 1 4 , 1 5 ) , ( 7 , 1 3 , 1 5 ) , ( 8 , 1 2 , 1 5 ) , ( 9 , 1 1 , 1 5 ) , ( 1 0 , 1 0 , 1 5 ) , ( 1 1 , 9 , 1 5 ) , ( 1 2 , 8 , 1 5 ) , ( 1 3 , 7 , 1 5 ) , ( 1 4 , 6 , 1 5 ) , ( 1 5 , 5 , 1 5 ) , ( 1 6 , 4 , 1 5 ) , ( 1 7 , 3 , 1 5 ) t o t a l 1 5 t r i p l e t s . C a s e B : i f ( a + b ) = 1 9 , c = 4 1 5 − 1 9 2 = 5 4 . S o , i t i s o b v i o u s t h a t i f ( a + b ) ≤ 1 9 , c ≥ 5 4 i n t h i s c a s e c b e c o m e s l a r g e r t h a n ( a + b ) , a n d s o n o n o n − d e g e n e r a t e t r i a n g l e c a n b e f o r m e d h a v i n g s i d e s a , b , c . S o t h e n u m b e r o f d i s t i n c t o r d e r e d t r i p l e t s i s 1 5
Problem Loading...
Note Loading...
Set Loading...
For ( a , b , c ) to be a triangle, we require that a + b > c b + c > a c + a > b From the original equation, for c to be positive, necessarily a + b ≤ 2 0 . But if a + b ≤ 1 9 , then c > = 3 9 , thereby contradicting a + b > c . Therefore, since a and b are integers, we deduce a + b = 2 0 and c = 1 5 .
From this, b + c > a ⇒ 2 0 − a + 1 5 > a ⇒ 3 5 > 2 a ⇒ a ≤ 1 7 and similarly c + a > b ⇒ 1 5 + a > 2 0 − a ⇒ 2 a > 5 ⇒ a ≥ 3 In the same way, 3 ≤ b ≤ 1 7 . The relation a + b = 2 0 puts these values of a and b in one-to-one correspondence with each other. Therefore, there are 15 possible solutions.