How many x x ?

Algebra Level 4

f ( x ) = 1 x 1000 + 1 x 999 + + 1 x + 1 + x + x 2 + + x 999 + x 1000 f(x) = \dfrac{1}{x^{1000}} + \dfrac{1}{x^{999}} +\cdots + \dfrac{1}{x} + 1 + x + x^2 + \cdots + x^{999} + x^{1000}

Consider the above function for all real positive x x . Find the minimum value of f ( x ) f(x) .


The answer is 2001.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Marco Antonio
Apr 24, 2016

For fact, we know that a Arithmetic Mean \geq Geometric Mean of the same terms. So:

1 x 1000 + 1 x 999 + . . . + 1 x + 1 + x + x 2 + . . . + x 999 + x 1000 2001 1 x 1000 × 1 x 999 × . . . × 1 × x × x 2 × . . . × x 999 × x 1000 2001 \frac{\frac{1}{x^{1000}} + \frac{1}{x^{999}} + ... + \frac{1}{x} + 1 + x + x^2 + ... + x^{999} + x^{1000}}{2001} \geq \sqrt[2001]{ \frac{1}{x^{1000}} \times \frac{1}{x^{999}} \times ... \times 1 \times x \times x^2 \times ... \times x^{999} \times x^{1000} }

Which give us:

1 x 1000 + 1 x 999 + . . . + 1 x + 1 + x + x 2 + . . . + x 999 + x 1000 2001 1 2001 \frac{1}{x^{1000}} + \frac{1}{x^{999}} + ... + \frac{1}{x} + 1 + x + x^2 + ... + x^{999} + x^{1000} \geq 2001 \sqrt[2001]{1} 1 x 1000 + 1 x 999 + . . . + 1 x + 1 + x + x 2 + . . . + x 999 + x 1000 2001 \therefore \frac{1}{x^{1000}} + \frac{1}{x^{999}} + ... + \frac{1}{x} + 1 + x + x^2 + ... + x^{999} + x^{1000} \geq 2001

Anything wrong, give me a feedback.

Absolutely correct ! Anyways a observation that x n + 1 x n 2 x^n+\frac{1}{x^n}\ge2 for n R n\in\mathbb{R} . so there are 1000 pairs of the above kind & 1. Minimum = 1000.2 + 1 = 2001 1000.2+1=2001

Aditya Narayan Sharma - 5 years, 1 month ago

Log in to reply

Baaachaaaaa onko ....lvl 4....omg

Sayandeep Ghosh - 5 years, 1 month ago
Jared Low
Aug 21, 2018

Since we have x i x^i to all be positive for integers 1000 i 1000 -1000 \leq i \leq 1000 , we can apply the Cauchy-Schwarz inequality to get:

( 1 x 1000 + 1 x 999 + + 1 x + 1 + x + x 2 + + x 999 + x 1000 ) 2 (\frac{1}{x^{1000}} + \frac{1}{x^{999}} + \ldots + \frac{1}{x} + 1 + x + x^2 +\ldots + x^{999} + x^{1000})^2

= ( x 1000 + x 999 + + x + 1 + 1 x + 1 x 2 + + 1 x 999 + 1 x 1000 ) ( 1 x 1000 + 1 x 999 + + 1 x + 1 + x + x 2 + + x 999 + x 1000 ) = ({x^{1000}} + {x^{999}} + \ldots + x + 1 + \frac{1}{x} + \frac{1}{x^2} +\ldots + \frac{1}{x^{999}} + \frac{1}{x^{1000}})(\frac{1}{x^{1000}} + \frac{1}{x^{999}} + \ldots + \frac{1}{x} + 1 + x + x^2 +\ldots + x^{999} + x^{1000})

( x 1000 1 x 1000 + x 999 1 x 999 + + 1 x 999 x 999 + 1 x 1000 x 1000 ) 2 \geq (\sqrt{x^{1000}\cdot \frac{1}{x^{1000}}} + \sqrt{x^{999}\cdot \frac{1}{x^{999}}} +\ldots + \sqrt{ \frac{1}{x^{999}}\cdot x^{999}} + \sqrt{ \frac{1}{x^{1000}}\cdot x^{1000}})^2

= 200 1 2 =2001^2

With equality when 1 x 1000 = 1 x 999 = = 1 x = 1 = x = x 2 = = x 999 = x 1000 \frac{1}{x^{1000}} = \frac{1}{x^{999}} = \ldots = \frac{1}{x} = 1 = x = x^2 =\ldots = x^{999} = x^{1000} , or when x = 1 x=1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...