How many real numbered ordered pairs satisfy the following inequalities:
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let's see if rewriting the inequalities will work.
For the first inequality, ( x + 2 y ) 2 ≤ ( 2 x − 3 ) ( 4 y + 3 ) x 2 + 4 x y + 4 y 2 ≤ 8 x y + 6 x − 1 2 y − 9 x 2 + 4 y 2 + 9 − 4 x y − 6 x + 1 2 y ≤ 0 ( x − 2 y − 3 ) 2 ≤ 0 But we know that all squares are nonnegative, that is, ( x − 2 y − 3 ) 2 ≥ 0 . Therefore, x − 2 y − 3 = 0 .
Similarly, for the second inequality, ( x − 2 y ) 2 ≤ ( 5 − 2 x ) ( 4 y − 5 ) x 2 − 4 x y + 4 y 2 ≤ 2 0 y − 2 5 − 8 x y + 1 0 x x 2 + 4 y 2 + 2 5 + 4 x y − 1 0 x − 2 0 y ≤ 0 ( x + 2 y − 5 ) 2 ≤ 0 Since ( x + 2 y − 5 ) 2 ≥ 0 for all x , y , thus x + 2 y − 5 = 0 .
Adding the two resulting equations (and simplifying) gives x = 4 . Thus, form the first equation, y = 2 1 . Thus, ( 4 , 2 1 ) is the unique ordered pair solution. The answer is 1 .