How much do you know about groups structure?

Algebra Level 1

Let G = D 4 G = D_4 (Dihedral group)

Is there any G G element of order four?

Doesn't exist exists

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Brian Moehring
Sep 13, 2018

The square has 90 degree rotational symmetry and if you repeatedly apply that same rotation, you'll reach the square's original orientation after exactly 4 rotations.

Therefore the answer is yes, either element corresponding to a 90 degree rotation has order 4.

Icaro Buscarini
Sep 6, 2018

Solution:

We have G = D 4 = G = D_4 =

{ ( 1 2 3 4 1 2 3 4 ) I d , ( 1 2 3 4 2 3 4 1 ) φ , ( 1 2 3 4 3 4 1 2 ) φ 2 , ( 1 2 3 4 4 1 2 3 ) φ 3 , ( 1 2 3 4 1 4 3 2 ) ψ , ( 1 2 3 4 2 1 4 3 ) φ ψ , ( 1 2 3 4 3 2 1 4 ) φ 2 ψ , ( 1 2 3 4 4 3 2 1 ) φ 3 ψ } \left\{\underbrace{\left(\begin{array}{cccc} 1 & 2 & 3 & 4\\ 1 & 2 & 3 & 4 \end{array} \right)}_{Id}, \underbrace{\left(\begin{array}{cccc} 1 & 2 & 3 & 4\\ 2 & 3 & 4 & 1 \end{array} \right)}_{\varphi}, \underbrace{\left(\begin{array}{cccc} 1 & 2 & 3 & 4\\ 3 & 4 & 1 & 2 \end{array} \right)}_{\varphi^2}, \underbrace{\left(\begin{array}{cccc} 1 & 2 & 3 & 4\\ 4 & 1 & 2 & 3 \end{array} \right)}_{\varphi^3}, \underbrace{\left(\begin{array}{cccc} 1 & 2 & 3 & 4\\ 1 & 4 & 3 & 2 \end{array} \right)}_{\psi}, \underbrace{\left(\begin{array}{cccc} 1 & 2 & 3 & 4\\ 2 & 1 & 4 & 3 \end{array} \right)}_{\varphi \cdot \psi} , \underbrace{\left(\begin{array}{cccc} 1 & 2 & 3 & 4\\ 3 & 2 & 1 & 4 \end{array} \right)}_{\varphi^2 \cdot \psi}, \underbrace{\left(\begin{array}{cccc} 1 & 2 & 3 & 4\\ 4 & 3 & 2 & 1 \end{array} \right)}_{\varphi^3 \cdot \psi} \right\}

φ 4 = φ φ 3 = ( 1 2 3 4 2 3 4 1 ) ( 1 2 3 4 4 1 2 3 ) = ( 1 2 3 4 1 2 3 4 ) = I d φ = 4 \Rightarrow \varphi^4 = \varphi \cdot \varphi^3 = \left(\begin{array}{cccc} 1 & 2 & 3 & 4\\ 2 & 3 & 4 & 1 \end{array} \right) \cdot \left(\begin{array}{cccc} 1 & 2 & 3 & 4\\ 4 & 1 & 2 & 3 \end{array} \right) = \left(\begin{array}{cccc} 1 & 2 & 3 & 4\\ 1 & 2 & 3 & 4 \end{array} \right) = Id \Rightarrow |\varphi| = 4

answer: exists

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...