How much does Cauchy-Schwarz Inequality can handle?

Algebra Level 3

Which of the following is the domain of ( a 1 , a 2 , , a n ) (a_1,a_2,…,a_n ) and ( b 1 , b 2 , , b n ) (b_1,b_2,…,b_n ) , such that we will always have

( a 1 2 + a 2 2 + + a n 2 ) ( b 1 2 + b 2 2 + + b n 2 ) ( a 1 b 1 + a 2 b 2 + + a n b n ) 2 (a_1^2+a_2^2+⋯+a_n^2 )(b_1^2+b_2^2+⋯+b_n^2 )≥(a_1 b_1+a_2 b_2+⋯+a_n b_n )^2

Choose the most suitable answer.

a i , b i a_i, b_i are positive numbers. a i , b i a_i, b_i are real numbers. a i , b i a_i, b_i are non-negative numbers. a i , b i a_i, b_i are complex numbers.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

0 solutions

No explanations have been posted yet. Check back later!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...