How Much Is Yellow

Geometry Level 3

State the area of the yellow to the nearest tenth.


The answer is 35.7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Esrael Santillan
Jul 22, 2014

Let r be half of the original radius and A T A_T be the total area of yellow. Let A c A_c be the area of quarter circle with radius r r . Let A 1 A_1 be half of the yellow part centered by point y. There are 3 A 1 A_1 here, 2 of them has their right angle connected to y and the other 1 is connected to x. So the total area of yellow is A T = A c + 3 A 1 A_T =A_c + 3A_1 A 1 A_1 is the difference between area of r × r r \times r square and area of quarter circle with radius r r . So A 1 = r 2 A c A_1 = r^{2} - {A_c} Then:

A T = A c + 3 A 1 = A c + 3 ( r 2 A c ) = A c + 3 r 2 3 A c = 3 r 2 2 A c = 3 r 2 2 ( π r 2 4 ) = 3 r 2 π r 2 2 = r 2 ( 3 π 2 ) \begin{aligned} A_T &=A_c + 3A_1 \\ &= A_c + 3(r^{2} - A_c) \\ &= A_c + 3r^{2} - 3A_c \\ &= 3r^{2} - 2A_c \\ &= 3r^{2} - 2\left(\frac{\pi r^{2}}{4}\right) \\ &= 3r^{2} - \frac{\pi r^{2}}{2} \\ &= r^{2}(3 - {\pi \over 2}) \\ \end{aligned}

At r = 10 2 = 5 r = {10 \over 2} = 5 , A T = ( 5 ) 2 ( 3 π 2 ) 35.73009183013 35.7 \begin{aligned} A_T &= (5)^{2}(3 - {\pi \over 2}) \\ &\approx 35.73009183013 \\ &\approx 35.7 \end{aligned}

but the question says "state the area of the yellow to the nearest tenth' .......so it is 40

hansraj sharma - 6 years, 10 months ago

That's insanely good. Why can't I analyse this well?

Jojo Ofthemojo - 6 years, 9 months ago
Mithun K
Aug 8, 2014

A r e a o f t h e i n t e r s e c t i o n o f t w o h a l f c i r c l e s = a , S m a l l e r h a l f c i r c l e = c a n d t h e q u a r t e r c i r c l e = b N o w a r e a o f t h e b l u e p o r t i o n = b ( 2 c a ) + 2 a s o A r e a o f t h e y e l l o w p o r t i o n = b ( b ( 2 c a ) + 2 a ) = 2 c 3 a N o w c = 25 Π 2 = 39.26 f o r f i n d i n g a c o n s i d e r t h e q u a r t e r a r c o f t h e s m a l l e r c i r c l e w h i c h i n c l u d e s t h e i n t e r s e c t i o n a r e a a a = 2 ( c 2 X C M ) c 2 i s t h e a r e a o f t h e q u a r t e r a r c o f h a l f s m a l l c i r c l e a n d M i s t h e c o n t a c t p o i n t o f t h e 2 c i c l e s a t p e r i f e r y S o a = 2 ( 25 Π 4 25 2 ) = 14.27 H e n c e t h e a c r e a o f t h e y e l l o w p o r t i o n = 2 c 3 a = 2 39.26 3 14.27 = 35.7 Area\quad of\quad the\quad intersection\quad \\ of\quad two\quad half\quad circles\quad =\quad a,\\ \\ Smaller\quad half\quad circle\quad =\quad c\quad \\ \\ and\quad the\quad quarter\quad circle\quad =\quad b\\ \\ Now\quad area\quad of\quad the\quad blue\quad portion\quad \\ \qquad \quad \quad \quad =\quad b-(2c-a)+2a\\ \\ so\quad Area\quad of\quad the\quad yellow\quad portion\quad \\ \qquad \qquad =\quad b-(b-(2c-a)+2a)\\ \qquad \qquad =\quad 2c-3a\\ \\ Now\qquad \qquad \qquad \qquad \\ \qquad \quad \quad \quad c\quad =\quad \frac { 25\Pi }{ 2 } \quad =\quad 39.26\\ \\ for\quad finding\quad a\quad consider\quad the\quad quarter\quad arc\quad \\ of\quad the\quad smaller\quad circlewhich\quad includes\quad \\ the\quad intersection\quad area\quad a\quad \\ \\ \qquad \qquad a\quad =\quad 2(\frac { c }{ 2 } \quad -\quad \triangle XCM)\quad \\ \frac { c }{ 2 } \quad is\quad the\quad area\quad of\quad the\quad quarter\quad arc\quad \\ of\quad half\quad small\quad circle\quad and\quad M\quad is\quad the\quad \\ \\ contact\quad point\quad of\quad the\quad 2\quad cicles\quad at\quad perifery\\ \quad \quad \\ So\qquad \qquad \\ \qquad \qquad a\quad =\quad 2*(\frac { 25\Pi }{ 4 } -\frac { 25 }{ 2 } )\quad =\quad 14.27\quad \\ \\ Hence\quad the\quad acrea\quad of\quad the\quad yellow\quad portion\quad \\ \qquad =\quad 2c-3a\quad =\quad 2*39.26-3*14.27\quad =\quad 35.7

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...