How much of the Earth can you see?

Geometry Level 5

Let C C be a circle of unit radius centered at the origin, and P = ( x 0 , 0 ) P = (-x_0,0) a point outside of it, where x 0 > 1. x_0>1. Let A A and B B be the 2 tangent points on the circle passing through P , P, and γ ( x 0 ) \gamma (x_0) the corresponding arc length of the circle between these two points.

What is the expression for the ratio between γ \gamma and the circumference of the circle?

1 2 x 0 π + x 0 2 \frac{1}{2} - \frac{ x_0}{\pi+x_0^2} tan 1 ( π x 0 2 1 ) π \frac{\tan^{-1} \left( \pi \sqrt{x_0^2-1 } \right)}{\pi} 1 2 x 0 1 + x 0 2 \frac{1}{2} - \frac{ x_0}{1+x_0^2} 1 2 π x 0 1 + x 0 2 \frac{1}{2}- \pi \frac{ x_0 }{1+x_0^2} tan 1 ( x 0 2 1 ) π \frac{\tan^{-1} \left( x_0^2-1 \right)}{\pi} tan 1 ( π ( x 0 2 1 ) ) π \frac{\tan^{-1} \left( \pi (x_0^2-1) \right)}{\pi} tan 1 ( x 0 2 1 ) \tan^{-1} \left( \sqrt{x_0^2-1 } \right) None of the above

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Patrick Bourg
Oct 27, 2017

Let P C = ( x , y ) C P_C = (x,y) \in \mathcal{C} . A corresponding tangent vector can be written as: ( y , x ) (-y,x) . Therefore, the line passing through points P P and P C P_C must satify: ( x , y ) ( x 0 , 0 ) = λ ( y , x ) (x,y) - (-x_0,0) = \lambda (-y,x) for some λ R \lambda \in \mathbb{R} . This gives us two sets of equations. Eliminating λ \lambda and using that x 2 + y 2 = 1 x^2+y^2=1 , we find that: A ( 1 x 0 , x 0 2 1 x 0 ) A \equiv \left(-\frac{1}{x_0},\frac{\sqrt{x_0^2-1}}{x_0} \right) and B ( 1 x 0 , x 0 2 1 x 0 ) B \equiv \left(-\frac{1}{x_0},- \frac{\sqrt{x_0^2-1}}{x_0} \right) What is the arc-length? By symmetry, it is twice the arc-length between, say point ( 1 , 0 ) (-1,0) and A. We find: tan ( θ ) = y x \tan (\theta) = \left| {\frac{y}{x}} \right| θ = tan 1 ( x 0 2 1 ) \Rightarrow \theta = \tan^{-1} \left( \sqrt{x_0^2-1} \right)

We then have γ = 2 θ \gamma = 2 \theta and since the perimeter of the circle is 2 π 2 \pi , the ratio is: γ 2 π = tan 1 ( x 0 2 1 ) π \frac{\gamma}{2 \pi} = \frac{ \tan^{-1} \left( \sqrt{x_0^2-1} \right)}{\pi}

Note the expected behaviour at x 0 1 x_0 \rightarrow 1 and x 0 x_0 \rightarrow \infty .

γ 2 = T a n 1 ( P A A O ) 1 = T a n 1 ( P O 2 A O 2 1 ) 1 = T a n 1 ( x 0 2 1 2 1 ) 1. γ 2 π = T a n 1 ( x 0 2 1 2 ) π . N O T i n t h e l i s t , N o n e o f t h e a b o v e . \Large \frac \gamma 2\\ =Tan^{-1}(\dfrac {PA}{AO})*1\\ =Tan^{-1}(\dfrac {\sqrt{PO^2-AO^2} }1)*1\\ =Tan^{-1}(\dfrac {\sqrt{x_0^2-1^2} }1)*1.\\ \therefore~ \frac { \gamma} {2\pi}\\ =\dfrac { Tan^{-1}( \sqrt{x_0^2-1^2} ) } {\pi} . \\ NOT ~in~ the~ list,\\ None ~of~ the ~above .

Niranjan Khanderia - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...