An algebra problem by Naren Bhandari

Algebra Level 3

Let x x and y y be integers satisfying 4 x × 6 y = 4 8 12 4^x \times 6^y = 48^{12} .

Find x + y x+y .


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Zach Abueg
Feb 1, 2017

4 x × 6 y = 4 8 12 4^x \times 6^y = 48^{12}

log ( 4 x × 6 y ) = 12 log 48 \log\ (4^x \times 6^y) = 12\ \log 48

log 2 2 x + log 6 y = 12 log ( 6 × 2 3 ) \log\ 2^{2x} + \log\ 6^y = 12\ \log (6 \times 2^3)

2 x log 2 + y log 6 = 12 ( log 6 + 3 log 2 ) 2x\ \log\ 2 + y\ \log\ 6 = 12\ (\log\ 6 + 3\ \log\ 2)

2 x log 2 + y log 6 = 12 log 6 + 36 log 2 2x\ \log\ 2 + y\ \log\ 6 = 12\ \log\ 6 + 36\ \log\ 2

2 x log 2 = 36 log 2 2 x = 36 x = 18 2x\ \log\ 2 = 36\ \log\ 2 \Longrightarrow 2x = 36 \Longrightarrow x = 18

y log 6 = 12 log 6 y = 12 y\ \log\ 6 = 12\ \log\ 6 \Longrightarrow y = 12

x + y = 30 x + y = 30

4 x × 6 y = 4 8 12 2 2 x × ( 2 × 3 ) y = ( 2 4 × 3 ) 12 2 2 x + y × 3 y = 2 48 × 3 12 \large 4^{x} \times 6^{y} = 48^{12} \Longrightarrow 2^{2x} \times (2 \times 3)^{y} = (2^{4} \times 3)^{12} \Longrightarrow 2^{2x + y} \times 3^{y} = 2^{48} \times 3^{12} .

Then by the Fundamental Theorem of Arithmetic we have that

2 x + y = 48 , y = 12 2 x = 36 x + y = 18 + 12 = 30 \large 2x + y = 48, y = 12 \Longrightarrow 2x = 36 \Longrightarrow x + y = 18 + 12 = \boxed{30} .

From 4 x 6 y = 4 8 12 = ( 2 4 3 ) 12 = 2 48 3 12 = 2 36 6 12 = 4 18 6 12 4^{\blue x}6^{\red y} = 48^{12} = (2^43)^{12} = 2^{48}3^{12} = 2^{36}6^{12} = 4^{\blue{18}}6^{\red{12}} , x = 18 \implies x = 18 and y = 12 y = 12 . Therefore, x + y = 30 x+y = \boxed{30} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...