How Quickly Can You Solve This?

Algebra Level 2

b + c a + c + a b + a + b c = ? \frac{\color{#69047E}{b}+\color{#3D99F6}{c}}{\color{#D61F06}{a}} + \frac{\color{#3D99F6}{c}+\color{#D61F06}{a}}{\color{#69047E}{b}} + \frac{\color{#D61F06}{a}+\color{#69047E}{b}}{\color{#3D99F6}{c}} = \ ?

If a + b + c = 6 \color{#D61F06}{a}+\color{#69047E}{b}+\color{#3D99F6}{c} = 6 and 1 a + 1 b + 1 c = 2 , \dfrac{1}{\color{#D61F06}{a}} + \dfrac{1}{\color{#69047E}{b}} + \dfrac{1}{\color{#3D99F6}{c}} = 2, find the value of the expression above.

10 12 6 9

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

First note that it is safe to assume that none of a , b , c a,b,c equal 0. 0. Now let the given expression be S . S. Then we have that

S + 3 = S + a a + b b + c c = ( b + c a + a a ) + ( c + a b + b b ) + ( a + b c + c c ) = S + 3 = S + \dfrac{a}{a} + \dfrac{b}{b} + \dfrac{c}{c} = \left(\dfrac{b + c}{a} + \dfrac{a}{a}\right) + \left(\dfrac{c + a}{b} + \dfrac{b}{b}\right) + \left(\dfrac{a + b}{c} + \dfrac{c}{c}\right) =

a + b + c a + a + b + c b + a + b + c c = ( a + b + c ) ( 1 a + 1 b + 1 c ) = 6 × 2 = 12. \dfrac{a + b + c}{a} + \dfrac{a + b + c}{b} + \dfrac{a + b + c}{c} = (a + b + c)\left(\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}\right) = 6 \times 2 = 12.

Thus S + 3 = 12 , S + 3 = 12, and so S = 9 . S = \boxed{9}.

Awesome solution! Another similar approach is to use the fact that b + c = 6 a b+c = 6-a and so on, at which point the expression simply becomes 6 a + 6 b + 6 c 3 = 6 2 3 = 9. \frac{6}{a}+\frac{6}{b}+\frac{6}{c} - 3 = 6\cdot 2 - 3 = 9.

Eli Ross Staff - 5 years, 7 months ago

Log in to reply

That's what I did.

Sam Maltia - 5 years, 7 months ago

Also my strat

Cole Wyeth - 5 years, 6 months ago

Is there any other method????

Aparna Kalbande - 5 years, 6 months ago

Alter

take a +b = 6 -c

Dev Sharma - 5 years, 7 months ago

Log in to reply

Gj, did the same, but it's pretty easy so no big deal

omar el amrani - 5 years, 6 months ago
Ahmed Obaiedallah
Nov 14, 2015

a + b + c = 6 \large\color{#D61F06}{a}+\color{#69047E}{b}+\color{#3D99F6}{c} = 6

1 a + 1 b + 1 c = 2 \large\frac{1}{\color{#D61F06}{a}} + \frac{1}{\color{#69047E}{b}} + \frac{1}{\color{#3D99F6}{c}} = 2

Notice that each denominator has the other 2 variables as the nominator, that would be achievable only by multiplication

So multiply the first 2 equations

( a + b + c ) × ( 1 a + 1 b + 1 c ) = ( 6 × 2 ) \large(\color{#D61F06}{a}+\color{#69047E}{b}+\color{#3D99F6}{c})\times(\frac{1}{\color{#D61F06}{a}} + \frac{1}{\color{#69047E}{b}} + \frac{1}{\color{#3D99F6}{c}}) = (6\times2)

a a + b b + c c + b + c a + a + c b + a + b c = 12 \large\color{#D61F06}{\frac{a}{a}}+\color{#69047E}{\frac{b}{b}}+\color{#3D99F6}{\frac{c}{c}}+\frac{\color{#69047E}{b}+\color{#3D99F6}{c}}{\color{#D61F06}{a}} + \frac{\color{#D61F06}{a}+\color{#3D99F6}{c}}{\color{#69047E}{b}} + \frac{\color{#D61F06}{a}+\color{#69047E}{b}}{\color{#3D99F6}{c}} = 12

b + c a + a + c b + a + b c = 12 3 = 9 \large\frac{\color{#69047E}{b}+\color{#3D99F6}{c}}{\color{#D61F06}{a}} + \frac{\color{#D61F06}{a}+\color{#3D99F6}{c}}{\color{#69047E}{b}} + \frac{\color{#D61F06}{a}+\color{#69047E}{b}}{\color{#3D99F6}{c}} = 12-3=9

It's so simple

Irwan Wirittiantono - 5 years, 6 months ago

It's also how i do it

Jason Chrysoprase - 5 years, 5 months ago
Thinking Sherlock
Nov 13, 2015

We are given that a+b+c=6. So, 1 a + b + c = 1 6 . \frac{1}{a+b+c}=\frac{1}{6}. Another information we are given is 1 a + 1 b + 1 c = 2. \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2. Relating these two, we can say that 12 a + b + c = 1 a + 1 b + 1 c \frac{12}{a+b+c}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c} , that is, 12 a + b + c = b c + a c + a b a b c \frac{12}{a+b+c}=\frac{bc+ac+ab}{abc} . 12 a b c = ( a + b + c ) ( b c + a c + a b ) 12abc=(a+b+c)(bc+ac+ab) . 12 a b c = a b c + a 2 c + a 2 b + b 2 c + a b c + a b 2 + b c 2 + a c 2 + a b c . 12abc=abc+a^{2}c+a^{2}b+b^{2}c+abc+ab^{2}+bc{2}+ac^{2}+abc. 12 a b c = a 2 ( b + c ) + b 2 ( a + c ) + c 2 ( a + b ) + 3 a b c . 12abc=a^{2}(b+c)+b^{2}(a+c)+c^{2}(a+b)+3abc. a 2 ( b + c ) + b 2 ( a + c ) + c 2 ( a + b ) = 9 a b c . a^{2}(b+c)+b^{2}(a+c)+c^{2}(a+b)=9abc. a 2 ( b + c ) + b 2 ( a + c ) + c 2 ( a + b ) a b c = 9. \frac{a^{2}(b+c)+b^{2}(a+c)+c^{2}(a+b)}{abc}=9. b + c a + a + c b + a + b c = 9. \frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=9.

We can assume a, b, c to be the sides of a triangle since its logical that a, b, c are positive. Now make use of semi-perimeter of a triangle.

Marc Ballon
Nov 22, 2015

Multiplying the two given equations then simplifying. You'll get the answer. PROMISE.

Chacon Alexandre
Nov 19, 2015

a ┼ b ┼ c = 6

1/a ┼ 1/b ┼ 1/c = 2

(b┼c)/a ┼ (c┼a)/b ┼ (a┼b)/c = ?

b/a ┼ c/a ┼ c/b ┼ a/b ┼ a/c ┼ b/c

├ (a ┼b ┼c)/a - 1 ┼ (a ┼b ┼c)/b - 1 ┼ (a ┼b ┼c)/c- 1

├ 6/a - 1 ┼ 6/b - 1 ┼ 6/c - 1

├ 6 × (1/a ┼ 1/b ┼ 1/c) - 3

6 × (2) -3 = 9

Eeshan Khan
Nov 19, 2015

Write (a+b+c-a)/a as first term, =(6/a)-1. Expn becomes 6(E(1/a)-3. E(1/a) is given as 2.E stands for sigma. Hence answer is 9.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...