Spot it yet ?

Algebra Level 5

{ x 2 + y + x 3 y + x y 2 + x y = 5 4 x 4 + y 2 + x y ( 1 + 2 x ) = 5 4 \large\begin{cases} x^2+y+x^3y+xy^2+xy=\frac{-5}{4}\\x^4+y^2+xy(1+2x)=\frac{-5}{4}\end{cases} Find the sum of all x x and y y from pairs of Real Numbers that satisfy the system of equations above. Round to 2 decimal places.

Note : If the system above has ( 5 ; 2 ) (5;2) and ( 0 ; 3 ) (0;3) as the only solutions, then the sum of all x x and y y is 5 + 2 + 0 + 3 = 10 5+2+0+3=10


The answer is -0.58.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

P C
Feb 27, 2016

Rewrite the system { x 2 + y + x y ( x 2 + y ) + x y = 5 4 ( x 2 + y ) 2 + x y = 5 4 \begin{cases} x^2+y+xy(x^2+y)+xy=\frac{-5}{4}\\ (x^2+y)^2+xy=\frac{-5}{4}\end{cases} Now we call x 2 + y = t x^2+y=t and x y = u xy=u , the system becomes { t + u . t + u = 5 4 t 2 + u = 5 4 \begin{cases} t+u.t+u=\frac{-5}{4}\\ t^2+u=\frac{-5}{4}\end{cases} { t ( t u 1 ) = 0 t 2 + u = 5 4 \Leftrightarrow\begin{cases} t(t-u-1)=0\\ t^2+u=\frac{-5}{4}\end{cases} We get ( t ; u ) = ( 0 ; 5 4 ) ; ( 1 2 ; 3 2 ) (t;u)=(0;\frac{-5}{4});(\frac{-1}{2};\frac{-3}{2}) as the answer. So

1. 1. When ( t ; u ) = ( 0 ; 5 4 ) (t;u)=(0;\frac{-5}{4}) , we have { x 2 + y = 0 x y = 5 4 \begin{cases} x^2+y=0\\xy=\frac{-5}{4}\end{cases} ( x ; y ) = ( 5 4 3 ; ( 5 4 3 ) 2 ) \Leftrightarrow (x;y)=\bigg(\sqrt[3]{\frac{5}{4}};-\bigg(\sqrt[3]{\frac{5}{4}}\bigg)^2\bigg) 2. 2. When ( t ; u ) = ( 1 2 ; 3 2 ) (t;u)=(\frac{-1}{2};\frac{-3}{2}) , we have { x 2 + y = 1 2 x y = 3 2 \begin{cases} x^2+y=\frac{-1}{2}\\xy=\frac{-3}{2}\end{cases} ( x ; y ) = ( 1 ; 3 2 ) \Leftrightarrow (x;y)=\bigg(1;\frac{-3}{2}\bigg) So the sum of all x and y will be 1 + 5 4 3 3 2 ( 5 4 3 ) 2 0.58 1+\sqrt[3]{\frac{5}{4}}-\frac{3}{2}-\bigg(\sqrt[3]{\frac{5}{4}}\bigg)^2\approx -0.58

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...