How sharp are your eyes part 1

Algebra Level 4

Find the product of the roots of all real x x satisfying the equation ( 7 x 3 ) 3 5 + 8 ( 3 7 x ) 3 5 = 7 \sqrt[5]{(7x-3)^3}+8\sqrt[5]{(3-7x)^{- 3}}=7

23 5 \frac{23}{5} 3 10 7 \frac{10}{7} 17 3 \frac{17}{3} 12 7 \frac{12}{7}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

P C
Dec 30, 2015

Condition of x: x 3 7 x\neq\frac{3}{7} Let ( 7 x 3 ) 3 5 = a \sqrt[5]{(7x-3)^3}=a We get a 8 a = 7 a-\frac{8}{a}=7 a 2 8 = 7 a \Leftrightarrow a^2-8=7a a 2 7 a 8 = 0 \Leftrightarrow a^2-7a-8=0 Solve the above equation and you get a = 8 x = 5 a=8\Leftrightarrow x=5 a = 1 x = 2 7 a=-1\Leftrightarrow x= \frac{2}{7} 5. 2 7 = 10 7 \Rightarrow 5.\frac{2}{7} = \frac{10}{7}

You should mention that x is real, otherwise other solutions can exist. For example:If ( 7 x 3 ) 3 5 = 1 ( 7 x 3 ) = 1 3 7 x 3 = 1 , ω , ω 2 , x = 2 7 , 3 ω 7 , 3 ω 2 7 \sqrt[5]{(7x - 3)^{3}} = -1 \implies (7x - 3) = \sqrt[3]{-1} \implies 7x - 3 = -1, -\omega, -\omega^{2} \implies, x = \frac{2}{7}, \frac{3 - \omega}{7}, \frac{3 - \omega^{2}}{7} . Similarly, when ( 7 x 3 ) 3 5 = 8 \sqrt[5]{(7x - 3)^{3}} = 8 .

Krutarth Patel - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...