How should I start?

Geometry Level 4

1 90 n = 1 90 2 n sin ( 2 n ) \dfrac{1}{90} \displaystyle \sum^{90}_{n=1} 2n \sin(2n^\circ)

If the value of the above expression is in the form cot ( k ) \cot(k^\circ) where 0 < k < 180 0<k<180 , find k k .

Clarification : All angles are measured in degrees.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 11, 2016

S = 1 90 n = 1 90 2 n sin ( 2 n ) = 1 90 ( 2 sin 2 + 4 sin 4 + 6 sin 6 + + 174 sin 17 4 + 176 sin 17 6 + 178 sin 17 8 + 180 sin 18 0 ) = 1 90 ( 2 sin 2 + 4 sin 4 + 6 sin 6 + + 174 sin 17 4 + 176 sin 17 6 + 178 sin 17 8 + 0 ) \begin{aligned} S & = \frac 1{90} \sum_{n=1}^{90} 2n \sin (2n^\circ) \\ & = \frac 1{90} \left( \color{#3D99F6}{2\sin 2^\circ} + \color{#20A900}{4\sin 4^\circ} + \color{#EC7300}{6\sin 6^\circ} + \cdots + \color{#EC7300}{174\sin 174^\circ} + \color{#20A900}{176\sin 176^\circ} + \color{#3D99F6}{178\sin 178^\circ} + \color{#D61F06}{180\sin 180^\circ} \right) \\ & = \frac 1{90} \left( \color{#3D99F6}{2\sin 2^\circ} + \color{#20A900}{4\sin 4^\circ} + \color{#EC7300}{6\sin 6^\circ} + \cdots + \color{#EC7300}{174\sin 174^\circ} + \color{#20A900}{176\sin 176^\circ} + \color{#3D99F6}{178\sin 178^\circ} + \color{#D61F06}{0} \right) \end{aligned}

Note that:

sin ( 18 0 θ ) = sin θ For example: sin 6 = sin 17 4 2 n sin ( 2 n ) + ( 180 2 n ) sin ( 18 0 2 n ) = 180 sin 2 n = 180 sin ( 18 0 2 n ) = 90 sin 2 n + 90 sin ( 18 0 2 n ) \begin{aligned} \sin (180^\circ - \theta) & = \sin \theta & \small \color{#EC7300}{\text{For example: }\sin 6^\circ =\sin 174^\circ} \\ \implies 2n \sin (2n^\circ) + (180-2n) \sin (180^\circ - 2n^\circ) & = 180 \sin 2n^\circ = 180 \sin (180^\circ - 2n^\circ) \\ & = 90 \sin 2n^\circ + 90 \sin (180^\circ - 2n^\circ) \end{aligned}

Therefore, we have:

S = 1 90 ( 90 sin 2 + 90 sin 4 + 90 sin 6 + + 90 sin 9 0 + + 90 sin 17 4 + 90 sin 17 6 + 90 sin 17 8 ) = n = 1 89 sin ( 2 n ) = n = 1 89 sin ( n π 90 ) = cot ( π 180 ) = cot 1 See Note. \begin{aligned} S & = \frac 1{90} \left(90 \sin 2^\circ + 90 \sin 4^\circ + 90 \sin 6^\circ + \cdots + 90 \sin 90^\circ + \cdots + 90 \sin 174^\circ + 90 \sin 176^\circ + 90 \sin 178^\circ \right) \\ & = \color{#3D99F6}{\sum_{n=1}^{89} \sin (2n^\circ) = \sum_{n=1}^{89} \sin \left( \frac {n\pi}{90} \right) = \cot \left(\frac \pi{180} \right) = \cot 1^\circ \quad \quad \small \text{See Note.}} \end{aligned}

k = 1 \implies k = \boxed{1}


Note: n = 1 m 1 sin ( n π m ) = cot ( π 2 m ) \color{#3D99F6}{\text{Note:}} \quad \displaystyle \sum_{n=1}^{m-1} \sin \left(\frac {n \pi}m \right) = \cot \left(\frac \pi{2m} \right) \quad (T. Drane, pers. comm., Apr. 19, 2006 -- Eqn. 21) .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...