How should I start it?

Call a number prime looking \text{prime looking} if it is composite but not divisible by 2 , 3 , 5 2, 3, 5 . The three smallest prime looking numbers are 49 , 77 , 91 49, 77, 91 . There are 168 168 prime numbers less than 1000 1000 . How many prime looking \text{prime looking} numbers are there less than 1000 1000 ?


Source: AMC12A 2005


The answer is 100.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Akshat Sharda
Oct 23, 2015

Out of numbers < 1000 , 999 2 = 499 multiples of 2. 999 3 = 333 multiples of 3. 999 5 = 199 multiples of 5. 999 6 = 166 multiples of 6. 999 10 = 99 multiples of 10. 999 15 = 66 multiples of 15. 999 30 = 33 multiples of 30. Therefore, 499 + 333 + 199 166 99 66 + 33 = 733 numbers are divisible by at least one of 2 , 3 , 5. Out of the remaining 999 733 = 266 numbers, 165 are prime other than 2 , 3 , 5. Note: 1 is neither prime nor composite. This leaves us with 100 prime looking numbers. \text{Out of numbers}<1000, \\ \Rightarrow \lfloor \frac{999}{2} \rfloor =499 \text{ multiples of } 2. \\ \Rightarrow \lfloor \frac{999}{3} \rfloor=333 \text{ multiples of }3. \\ \Rightarrow \lfloor \frac{999}{5} \rfloor=199 \text{ multiples of }5. \\ \Rightarrow \lfloor \frac{999}{6} \rfloor=166 \text{ multiples of }6. \\ \Rightarrow \lfloor \frac{999}{10} \rfloor=99 \text{ multiples of }10. \\ \Rightarrow \lfloor \frac{999}{15} \rfloor=66 \text{ multiples of }15. \\ \Rightarrow \lfloor \frac{999}{30} \rfloor=33 \text{ multiples of }30. \\ \text{Therefore, } 499+333+199-166-99-66+33=733 \text{ numbers are divisible by at least one of }2,3,5. \\ \text{Out of the remaining }999-733=266 \text{ numbers, }165 \text{ are prime other than }2,3,5. \\ \color{#D61F06}{\text{Note: }1\text{ is neither prime nor composite.}} \\ \text{This leaves us with }\boxed{100} \text{ prime looking numbers.}

Should've noted 2,3 and 5 were prime...

Manuel Kahayon - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...