Raise to the Raise

Algebra Level 4

i = 0 1024 ( 2 2 i + 1 ) = ? \large \prod _{ i=0 }^{ 1024 }{ \left( { 2 }^{ { 2 }^{ i } }+1 \right) } = \ ?

( 2 2 2048 + 1 ) \left( { 2 }^{ { 2 }^{ 2048 } }+1 \right) ( 2 1024 ! + 1 ) \left( { 2 }^{ 1024! }+1 \right) ( 2 1024 ! 2 512 ! ) \left( { 2 }^{ 1024! }-{ 2 }^{ 512! } \right) ( 2 2 2 10 + 1 1 ) \left( { 2 }^{ { 2 }^{ { 2 }^{ 10 }+1 } }-1 \right) ( 2 2 2 10 + 1 ) \left( { 2 }^{ { 2 }^{ { 2 }^{ 10 } } }+1 \right) ( 2 2 2 10 + 1 + 1 ) \left( { 2 }^{ { 2 }^{ { 2 }^{ 10 }+1 } }+1 \right) ( 2 512 ! 1 ) \left( { 2 }^{ 512! }-1 \right) ( 2 2 2 10 1 ) \left( { 2 }^{ { 2 }^{ { 2 }^{ 10 } } }-1 \right)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Curtis Clement
Mar 29, 2015

By using a difference of two squares we can show that: 2 2 i + 1 = 2 2 i + 1 1 2 2 i 1 \large 2^{2^i} +1 = \frac{2^{2^{i+1}} -1}{2^{2^{i}} -1} This creates a very neat telescoping series: i = o 1024 ( 2 2 i + 1 ) = i = o 1024 ( 2 2 i + 1 1 2 2 i 1 ) \large \displaystyle\prod_{i=o}^{1024} ( 2^{2^i} +1) = \displaystyle\prod_{i=o}^{1024} (\frac{2^{2^{i+1}} -1}{2^{2^{i}} -1}) = 2 2 1 2 1 × 2 4 1 2 2 1 × . . . × 2 2 1024 1 2 2 1023 1 × 2 2 1025 1 2 2 1024 1 \large = \frac{2^2-1}{2-1}\times\frac{2^4-1}{2^2-1}\times\ ... \times\frac{2^{2^{1024}} -1}{2^{2^{1023}}-1}\times\frac{2^{2^{1025}} -1}{2^{2^{1024}}-1} = 2 2 1025 1 = 2 2 ( 2 10 + 1 ) \Huge = 2^{2^{1025}} - 1 = \boxed{2^{2^{(2^{10} +1)}}}

Archit Boobna
Mar 29, 2015

W e c a n w r i t e t h e v a l u e a s ( 2 + 1 ) ( 4 + 1 ) ( 16 + 1 ) ( 256 + 1 ) . . . . . ( 2 2 1023 + 1 ) ( 2 2 1024 + 1 ) S i n c e ( 2 1 ) i s 1 , w e c a n m u l t i p l y i t t o a n y t h i n g . ( 2 + 1 ) ( 4 + 1 ) ( 16 + 1 ) ( 256 + 1 ) . . . . . ( 2 2 1023 + 1 ) ( 2 2 1024 + 1 ) = ( 2 1 ) ( 2 + 1 ) ( 4 + 1 ) ( 16 + 1 ) ( 256 + 1 ) . . . . . ( 2 2 1023 + 1 ) ( 2 2 1024 + 1 ) M u l t i p l y ( 2 1 ) a n d ( 2 + 1 ) = ( 4 1 ) ( 4 + 1 ) ( 16 + 1 ) ( 256 + 1 ) . . . . . ( 2 2 1023 + 1 ) ( 2 2 1024 + 1 ) M u l t i p l y ( 4 1 ) a n d ( 4 + 1 ) = ( 16 1 ) ( 16 + 1 ) ( 256 + 1 ) . . . . . ( 2 2 1023 + 1 ) ( 2 2 1024 + 1 ) I t w i l l k e e p o n b r e a k i n g t i l l i t r e a c h e s t h i s = ( 2 2 1024 1 ) ( 2 2 1024 + 1 ) = ( ( 2 2 1024 ) 2 1 ) = ( 2 2 1024 . 2 1 ) = ( 2 2 1024 + 1 1 ) = ( 2 2 2 10 + 1 1 ) We\quad can\quad write\quad the\quad value\quad as-\\ \\ \left( 2+1 \right) \left( 4+1 \right) \left( 16+1 \right) \left( 256+1 \right) .....\left( { 2 }^{ { 2 }^{ 1023 } }+1 \right) \left( { 2 }^{ { 2 }^{ 1024 } }+1 \right) \\ \\ Since\quad (2-1)\quad is\quad 1,\quad we\quad can\quad multiply\quad it\quad to\quad anything.\\ \\ \left( 2+1 \right) \left( 4+1 \right) \left( 16+1 \right) \left( 256+1 \right) .....\left( { 2 }^{ { 2 }^{ 1023 } }+1 \right) \left( { 2 }^{ { 2 }^{ 1024 } }+1 \right) \\ =\left( 2-1 \right) \left( 2+1 \right) \left( 4+1 \right) \left( 16+1 \right) \left( 256+1 \right) .....\left( { 2 }^{ { 2 }^{ 1023 } }+1 \right) \left( { 2 }^{ { 2 }^{ 1024 } }+1 \right) \\ \\ Multiply\quad (2-1)\quad and\quad (2+1)\\ \\ =\left( 4-1 \right) \left( 4+1 \right) \left( 16+1 \right) \left( 256+1 \right) .....\left( { 2 }^{ { 2 }^{ 1023 } }+1 \right) \left( { 2 }^{ { 2 }^{ 1024 } }+1 \right) \\ \\ Multiply\quad (4-1)\quad and\quad (4+1)\\ \\ =\left( 16-1 \right) \left( 16+1 \right) \left( 256+1 \right) .....\left( { 2 }^{ { 2 }^{ 1023 } }+1 \right) \left( { 2 }^{ { 2 }^{ 1024 } }+1 \right) \\ \\ It\quad will\quad keep\quad on\quad breaking\quad till\quad it\quad reaches\quad this-\\ \\ =\left( { 2 }^{ { 2 }^{ 1024 } }-1 \right) \left( { 2 }^{ { 2 }^{ 1024 } }+1 \right) \\ =\left( { \left( { 2 }^{ { 2 }^{ 1024 } } \right) }^{ 2 }-1 \right) \\ =\left( { 2 }^{ { 2 }^{ 1024 }.2 }-1 \right) \\ =\left( { 2 }^{ { 2 }^{ 1024+1 } }-1 \right) \\ =\left( { 2 }^{ { 2 }^{ { 2 }^{ 10 }+1 } }-1 \right)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...