How Terrible Angles Become Nice With The Correct Combo

Geometry Level 3

Compute cos 3 6 cos 7 2 \cos 36^\circ-\cos 72^\circ .


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

There is a general identity (see proof below):

k = 1 n cos ( 2 k 1 2 n + 1 π ) = 1 2 \sum_{k=1}^n \cos \left(\frac {2k-1}{2n+1}\pi \right) = \frac 12

So when n = 2 n=2 , we have:

cos π 5 + cos 3 π 5 = 1 2 cos π 5 cos ( π 3 π 5 ) = 1 2 cos π 5 cos 2 π 5 = 1 2 cos 3 6 cos 7 2 = 0.5 \begin{aligned} \cos \frac \pi 5 \blue{+ \cos \frac {3\pi}5} & = \frac 12 \\ \cos \frac \pi 5 \blue {-\cos \left(\pi - \frac {3\pi}5 \right)} & = \frac 12 \\ \cos \frac \pi 5 - \cos \frac {2\pi}5 & = \frac 12 \\ \implies \cos 36^\circ - \cos 72^\circ & = \boxed{0.5} \end{aligned}


Proof:

S = k = 1 n cos ( 2 k 1 2 n + 1 π ) = ( k = 1 n e 2 k 1 2 n + 1 π i ) = ( e π i 2 n + 1 k = 0 n 1 e 2 k π i 2 n + 1 ) = ( e π i 2 n + 1 ( e 2 n π i 2 n + 1 1 ) e 2 π i 2 n + 1 1 ) = ( e π i e π i 2 n + 1 e 2 π i 2 n + 1 1 ) = ( 1 + e π i 2 n + 1 1 e 2 π i 2 n + 1 ) = ( 1 1 e π i 2 n + 1 ) = ( 1 1 cos π 2 n + 1 i sin π 2 n + 1 ) = ( 1 cos π 2 n + 1 + i sin π 2 n + 1 ( 1 cos π 2 n + 1 i sin π 2 n + 1 ) ( 1 cos π 2 n + 1 + i sin π 2 n + 1 ) ) = ( 1 cos π 2 n + 1 + i sin π 2 n + 1 2 2 cos π 2 n + 1 ) = 1 2 \begin{aligned} S & = \sum_{k=1}^n \cos \left(\frac {2k-1}{2n+1}\pi \right) = \Re \left(\sum_{k=1}^n e^{\frac {2k-1}{2n+1}\pi i} \right) = \Re \left(e^{\frac {\pi i}{2n+1}}\sum_{k=0}^{n-1} e^{\frac {2k \pi i}{2n+1}} \right) \\ & = \Re \left(\frac {e^{\frac {\pi i}{2n+1}}\left(e^{\frac {2n\pi i}{2n+1}}-1\right)}{e^{\frac {2\pi i}{2n+1}}-1}\right) = \Re \left(\frac {e^{\pi i} - e^{\frac {\pi i}{2n+1}}}{e^{\frac {2\pi i}{2n+1}}-1}\right) = \Re \left(\frac {1+ e^{\frac {\pi i}{2n+1}}}{1 - e^{\frac {2\pi i}{2n+1}}}\right) \\ & = \Re \left(\frac 1{1-e^{\frac {\pi i}{2n+1}}} \right) = \Re \left(\frac 1{1-\cos \frac \pi{2n+1} - i\sin \frac \pi{2n+1}} \right) \\ & = \Re \left(\frac {1-\cos \frac \pi{2n+1} + i\sin \frac \pi{2n+1}}{\left(1-\cos \frac \pi{2n+1} - i\sin \frac \pi{2n+1}\right)\left(1-\cos \frac \pi{2n+1} + i\sin \frac \pi{2n+1}\right)} \right) \\ & = \Re \left(\frac {1-\cos \frac \pi{2n+1} + i\sin \frac \pi{2n+1}}{2-2\cos \frac \pi{2n+1}} \right) = \boxed{\frac 12} \end{aligned}

Nice, but how do you prove this identity?

Nitin Kumar - 8 months, 1 week ago

Log in to reply

I have provided the proof.

Chew-Seong Cheong - 8 months, 1 week ago

Log in to reply

Ok, thank you!

Nitin Kumar - 8 months, 1 week ago
Nitin Kumar
Oct 2, 2020

Note that cos 36 cos 72 = 2 cos 2 36 2 cos 2 72 2 cos 36 + 2 cos 72 = cos 72 + 1 cos 144 1 2 cos 36 + 2 cos 72 = 1 2 = 0.5. \cos 36-\cos 72=\frac{2\cos^2 36-2\cos^2 72} {2\cos 36+2\cos 72}=\frac{\cos 72+1-\cos 144-1}{2\cos 36+2\cos 72}=\frac{1}{2}=0.5. This method is quite slick in my opinion! Source: 103 Trigonometric problems by Titu Andreescu.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...