cos ( 7 π ) + cos ( 7 3 π ) + cos ( 7 5 π ) = ?
This is part of the set My Problems and THRILLER
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
In general, k = 0 ∑ n − 1 cos ( 2 n + 1 2 k + 1 π ) = 2 1 , consider the following.
S = k = 0 ∑ n − 1 cos ( 2 n + 1 2 k + 1 π ) = k = 0 ∑ n − 1 ℜ { e 2 n + 1 2 k + 1 π i } = ℜ { k = 0 ∑ n − 1 e 2 n + 1 2 k + 1 π i } = ℜ { e 2 n + 1 π i k = 0 ∑ n − 1 e 2 n + 1 2 k π i } = ℜ { e 2 n + 1 π i ( 1 − e 2 n + 1 2 π i 1 − e 2 n + 1 2 n π i ) } = ℜ { 1 − e 2 n + 1 2 π i e 2 n + 1 π i + 1 } = ℜ { 1 − e 2 n + 1 π i 1 } = ℜ { 1 − cos 2 n + 1 π − i sin 2 n + 1 π 1 } = ℜ { ( 1 − cos 2 n + 1 π ) 2 + sin 2 2 n + 1 π 1 − cos 2 n + 1 π + i sin 2 n + 1 π } = ℜ { 2 − 2 cos 2 n + 1 π 1 − cos 2 n + 1 π + i sin 2 n + 1 π } = 2 1 where ℜ { z } is the real part of complex number z
Great solution sir!!
Directly use the formula of summation of cosines when the angles are in AP .
To get 1/2
Can you please share the formula and its proof because I am not aware of it?
Log in to reply
http://math.stackexchange.com/questions/117114/sum-cos-when-angles-are-in-arithmetic-progression
Problem Loading...
Note Loading...
Set Loading...
Let z = c o s ( 7 π ) + i s i n ( 7 π ) .
By de moivre's theorem , z 7 = c o s ( π ) + i s i n ( π ) = − 1
⇒ z 7 + 1 = 0
⇒ ( z + 1 ) ( z 6 − z 5 + z 4 − z 3 + z 2 − z + 1 ) = 0
But since the first factor = 0 , therefore the second factor = 0 .
By de movier's theorem,
c o s ( 7 π ) + c o s ( 7 3 π ) + c o s ( 7 5 π )
= 2 1 ( ( z + z 1 ) + ( z 3 + z 3 1 ) + ( z 5 + z 5 1 ) )
= 2 1 ( z 5 z 6 + z 4 + z 8 + z 2 + z 1 0 + 1 ) .
= 2 1 ( z 5 z 6 + z 4 + z 8 + z 2 + z 1 0 + 1 ) + 2 1 − 2 1 .
Using z 7 = − 1 to simplify the expression gives ,
2 1 ( z 5 z 6 − z 5 + z 4 − z 3 + z 2 − z + 1 ) + 2 1
Using , ( z 6 − z 5 + z 4 − z 3 + z 2 − z + 1 ) = 0 .
We get the answer as 2 1 .