How to evaluate these?!

Calculus Level 4

Let f ( a ) f\left(a\right) be a function which satisfies

f ( a ) 0 e x x 2 + a 2 d x = 0 sin x x + a d x f\left(a\right)\int_{0}^{\infty}\frac{e^{-x}}{x^{2}+a^{2}}dx=\int_{0}^{\infty}\frac{\sin x}{x+a}dx

for all real positive a a . Find the value of

f ( π + e ) f ( π e ) f\left(\pi+e\right) f\left(\pi-e\right)


The answer is 2.4805.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Vilakshan Gupta
May 2, 2020

Let I ( a , k ) = 0 sin x x + a e k ( x + a ) d x I(a,k)=\int_{0}^{\infty} \dfrac{\sin x}{x+a} ~ e^{-k(x+a)} dx

Now partially differentiating the above integral with respect to k k , we get I k = 0 sin x e k ( x + a ) d x = e k a 0 sin x e k x d x \dfrac{ \partial I}{\partial k}=- \int_{0}^{\infty} \sin x ~ e^{-k(x+a)} dx=-e^{-ka} \int_{0}^{\infty} \sin x ~ e^{-kx} dx

Evaluating the above integral is easy by Integration by parts, which comes out to be e k a 0 sin x e k x d x = e a k 1 + k 2 -e^{-ka} \int_{0}^{\infty} \sin x ~ e^{-kx} dx=- \dfrac{e^{-ak}}{1+k^2}

And now, since I ( a , k ) 0 I(a,k) \to 0 as k k \to \infty , we deduce that 0 sin x x + a = lim k 0 I ( a , k ) = 0 e k a k 2 + 1 d k = a 0 e u u 2 + a 2 d u \int_{0}^{\infty} \dfrac{\sin x}{x+a}= \lim_{k \to 0} I(a,k) = \int_{0}^{\infty} \dfrac{e^{-ka}}{k^2+1} dk = a \int_{0}^{\infty} \dfrac{e^{-u}}{u^2+a^2} du

which implies f ( a ) = a f(a)=a for a > 0 a > 0 .

Hence f ( π + e ) f ( π e ) = π 2 e 2 2.4805 f(\pi+e)f(\pi-e)=\boxed{\pi^2-e^2 \approx 2.4805} .

The solution is incomprehensible near the end....Please edit it....

Aaghaz Mahajan - 1 year, 1 month ago

You mean that I k = e k a k 2 + 1 \frac{\partial I}{\partial k} \; =\; -\frac{e^{-ka}}{k^2+1} and, since I ( a , k ) 0 I(a,k) \to 0 as k k \to \infty , we deduce that 0 sin x x + a d x = lim k 0 I ( a , k ) = 0 e k a k 2 + 1 d k = a 0 e u u 2 + a 2 d u \int_0^\infty \frac{\sin x}{x+a}\,dx \; = \; \lim_{k \to 0}I(a,k) \; = \; \int_0^\infty \frac{e^{-ka}}{k^2+1}\,dk \; = \; a\int_0^\infty \frac{e^{-u}}{u^2+a^2}\,du , which makes f ( a ) = a f(a) = a for a > 0 a > 0 .

Mark Hennings - 1 year, 1 month ago

Log in to reply

Yes sir, thanks for the correction and explanation...I have edited it.

Vilakshan Gupta - 1 year, 1 month ago

I tends to go with different approch but I got stuck with my working. Can you please help me out with this, sir ?

We note that sin x x + a = 0 e ( x + a ) y sin x d y 0 sin x x + a d x = 0 ( 0 e ( x + a ) y sin x d x ) d y \frac{\sin x}{x+a}=\int_0^{\infty} e^{-(x+a)y}\sin xdy\implies \int_0^{\infty}\frac{\sin x}{x+a}dx =\int_0^{\infty}\left(\int_0^{\infty}e^{-(x+a)y}\sin xdx\right)dy as the 0 ( 0 e ( x + a ) y sin x d y ) d x = 0 ( 0 e ( x + a ) y sin x d x ) d y \int_0^{\infty}\left(\int_0^{\infty}e^{-(x+a)y}\sin xdy\right)dx= \int_0^{\infty}\left(\int_0^{\infty}e^{-(x+a)y}\sin xdx\right)dy Further it is easy to deduce by integration parts that 0 e ( x + a ) y sin x d x = [ e ( x + a ) y ( y sin x + cos x ) 1 + y 2 ] 0 = e a y 1 + y 2 \int_0^{\infty}e^{-(x+a)y}\sin xdx=\left[\frac{e^{-(x+a)y}(y\sin x+\cos x)}{1+y^2}\right]_{0}^{\infty}=\frac{e^{-ay}}{1+y^2} and hence 0 sin x x + a d x = 0 ( 0 e ( x + a ) y sin x d x ) d y = 0 e a y 1 + y 2 d y \int_0^{\infty}\frac{\sin x}{x+a}dx= \int_0^{\infty}\left(\int_0^{\infty}e^{-(x+a)y}\sin xdx\right)dy=\int_0^{\infty}\frac{e^{-ay}}{1+y^2}dy The latter integral is in the form of Exponential integral but I don't know what to do after this as setting u = 1 + y 2 u=1+y^2 doesn't work.

Added : I even tried up doing y 2 + 1 = ( y + i ) ( y i ) y^2+1=(y+i)(y-i) and got the indefinite integral in terms of exponential integral ( where i 2 = 1 i^2=-1 ) but I don't know how closed form it appears in sine and cosine integral( as per WA).

Update: I solved it sir.

Naren Bhandari - 1 year, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...