Let f ( a ) be a function which satisfies
f ( a ) ∫ 0 ∞ x 2 + a 2 e − x d x = ∫ 0 ∞ x + a sin x d x
for all real positive a . Find the value of
f ( π + e ) f ( π − e )
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The solution is incomprehensible near the end....Please edit it....
You mean that ∂ k ∂ I = − k 2 + 1 e − k a and, since I ( a , k ) → 0 as k → ∞ , we deduce that ∫ 0 ∞ x + a sin x d x = k → 0 lim I ( a , k ) = ∫ 0 ∞ k 2 + 1 e − k a d k = a ∫ 0 ∞ u 2 + a 2 e − u d u , which makes f ( a ) = a for a > 0 .
Log in to reply
Yes sir, thanks for the correction and explanation...I have edited it.
I tends to go with different approch but I got stuck with my working. Can you please help me out with this, sir ?
We note that x + a sin x = ∫ 0 ∞ e − ( x + a ) y sin x d y ⟹ ∫ 0 ∞ x + a sin x d x = ∫ 0 ∞ ( ∫ 0 ∞ e − ( x + a ) y sin x d x ) d y as the ∫ 0 ∞ ( ∫ 0 ∞ e − ( x + a ) y sin x d y ) d x = ∫ 0 ∞ ( ∫ 0 ∞ e − ( x + a ) y sin x d x ) d y Further it is easy to deduce by integration parts that ∫ 0 ∞ e − ( x + a ) y sin x d x = [ 1 + y 2 e − ( x + a ) y ( y sin x + cos x ) ] 0 ∞ = 1 + y 2 e − a y and hence ∫ 0 ∞ x + a sin x d x = ∫ 0 ∞ ( ∫ 0 ∞ e − ( x + a ) y sin x d x ) d y = ∫ 0 ∞ 1 + y 2 e − a y d y The latter integral is in the form of Exponential integral but I don't know what to do after this as setting u = 1 + y 2 doesn't work.
Added : I even tried up doing y 2 + 1 = ( y + i ) ( y − i ) and got the indefinite integral in terms of exponential integral ( where i 2 = − 1 ) but I don't know how closed form it appears in sine and cosine integral( as per WA).
Update: I solved it sir.
Problem Loading...
Note Loading...
Set Loading...
Let I ( a , k ) = ∫ 0 ∞ x + a sin x e − k ( x + a ) d x
Now partially differentiating the above integral with respect to k , we get ∂ k ∂ I = − ∫ 0 ∞ sin x e − k ( x + a ) d x = − e − k a ∫ 0 ∞ sin x e − k x d x
Evaluating the above integral is easy by Integration by parts, which comes out to be − e − k a ∫ 0 ∞ sin x e − k x d x = − 1 + k 2 e − a k
And now, since I ( a , k ) → 0 as k → ∞ , we deduce that ∫ 0 ∞ x + a sin x = k → 0 lim I ( a , k ) = ∫ 0 ∞ k 2 + 1 e − k a d k = a ∫ 0 ∞ u 2 + a 2 e − u d u
which implies f ( a ) = a for a > 0 .
Hence f ( π + e ) f ( π − e ) = π 2 − e 2 ≈ 2 . 4 8 0 5 .