How to generalize it?

Find the largest non-negative integer n n such that 2 n 2^n is a factor 2 × 3 × 4 × × 99 \left\lfloor\sqrt2\right\rfloor\times\left\lfloor\sqrt3\right\rfloor\times\left\lfloor\sqrt4\right\rfloor\times\cdots\times\left\lfloor\sqrt{99}\right\rfloor


This is a part of the Set .


The answer is 87.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let the product be P P , then we have:

P = 2 × 3 × 4 × 5 × 6 × 7 × 8 × 9 × . . . × 99 = 1 × 1 × 2 × 2 × 2 × 2 × 2 × 3 × . . . × 9 Note that m increases by 1 when m is a perfect square. = 1 4 2 2 9 4 3 16 9 . . . k ( k + 1 ) 2 k 2 . . . 9 100 81 = k = 2 9 k 2 k + 1 = 2 5 3 7 4 9 5 11 6 13 7 15 8 17 9 19 = 2 5 ( 2 2 ) 9 ( 2 13 3 13 ) ( 2 3 ) 17 3 7 5 11 7 15 9 19 = 2 5 + 18 + 13 + 51 3 20 5 11 7 15 9 19 = 2 87 3 20 5 11 7 15 9 19 \begin{aligned} P & = \left \lfloor \sqrt{2} \right \rfloor \times \left \lfloor \sqrt{3} \right \rfloor \times \left \lfloor \sqrt{\color{#3D99F6}{4}} \right \rfloor \times \left \lfloor \sqrt{5} \right \rfloor \times \left \lfloor \sqrt{6} \right \rfloor \times \left \lfloor \sqrt{7} \right \rfloor \times \left \lfloor \sqrt{8} \right \rfloor \times \left \lfloor \sqrt{\color{#D61F06}{9}} \right \rfloor \times ... \times \left \lfloor \sqrt{99} \right \rfloor \\ & = 1 \times 1 \times \color{#3D99F6}{2} \times 2 \times 2 \times 2 \times 2 \times \color{#D61F06}{3} \times ... \times 9 \quad \quad \small \color{#3D99F6}{\text{Note that }\left \lfloor \sqrt{m} \right \rfloor \text{ increases by 1 when m is a perfect square.}} \\ & = 1^{4-2}2^{9-4}3^{16-9}...k^{(k+1)^2-k^2}...9^{100-81} \\ & = \prod_{k=2}^9 k^{2k+1} \\ & = \color{#3D99F6}{2^5}3^7\color{#D61F06}{4^9}5^{11}\color{#3D99F6}{6^{13}}7^{15} \color{#D61F06}{8^{17}}9^{19} \\ & = \color{#3D99F6}{2^5} \color{#D61F06}{(2^2)^9} \color{#3D99F6}{(2^{13}3^{13})}\color{#D61F06}{(2^3)^{17}} 3^7 5^{11}7^{15} 9^{19} \\ & = 2^{\color{#3D99F6}{5}+ \color{#D61F06}{18}+ \color{#3D99F6}{13} + \color{#D61F06}{51}} 3^{20} 5^{11}7^{15} 9^{19} \\ & = 2^{\color{#3D99F6}{87}} 3^{20} 5^{11}7^{15} 9^{19} \end{aligned}

n = 87 \Rightarrow n = \boxed{\color{#3D99F6}{87}} .

Did the same.

Shreyash Rai - 5 years, 6 months ago

Did same...

Dev Sharma - 5 years, 6 months ago
John Gilling
Oct 22, 2015

The multiplication simplifies to: 1 2 2 5 3 7 4 9 5 11 6 13 7 15 8 17 9 19 1^{2}\cdot 2^{5}\cdot 3^{7}\cdot 4^{9}\cdot 5^{11}\cdot 6^{13}\cdot 7^{15}\cdot 8^{17}\cdot 9^{19} Or: 2 5 2 18 2 13 2 51 k 2^{5}\cdot 2^{18}\cdot 2^{13}\cdot 2^{51}\cdot k where k k is odd. So, n = 5 + 18 + 13 + 51 = 87 n=5+18+13+51=87 .

Where the simplifying comes from?

Ghany M - 5 years, 7 months ago

Log in to reply

Ghany M ,

The simplification comes from the observation that the differences between perfect squares is simply the increasing sequence of odd numbers. More specifically, n 2 ( n 1 ) 2 = 2 n 1 n^2 - (n-1)^2 = 2n - 1 , and so there are exactly 2 n 1 2n-1 positive integers k k satisfying k = n 1 \lfloor\sqrt{k}\rfloor = n-1 , namely ( n 1 ) 2 , ( n 1 ) 2 + 1 , , n 2 1 (n-1)^2, (n-1)^2 + 1, \dots, n^2 - 1 . Therefore, when we multiply the floors of the square roots of these values all together, we're really just calculating ( n 1 ) 2 n 1 (n-1)^{2n-1} .

The second step of the simplification merely comes from breaking down the powers into their prime factors and rearranging the terms. Hope this helped!

John Gilling - 5 years, 7 months ago

n=1:- 4~~to~~8. .......1 * 5 ...............= 5
n=2:-16~~to~~24......2 * 9 ...............=18
n=1:-36~~t0~~48......1 * 13 ..............=13
n=3:-64~~to~~80......3 * 17 ..............=51
~~~~~~~~~~~~~~~~~~~~~~~~~~~~-----
~~~~~~~~~~~~~~~~~~~~~~~~~~~= 87. \Large \color{#D61F06}{87}.




0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...