How to handle such integrals

Calculus Level 4

0 1 ( 1 ( 1 x 2 ) 100 ) 201 x d x 0 1 ( 1 ( 1 x 2 ) 100 ) 202 x d x = p q \large \frac{\displaystyle \int_{0}^{1} \left(1-\left(1-x^2\right)^{100}\right)^{201}x\ dx}{\displaystyle \int_{0}^{1} \left(1-\left(1-x^2\right)^{100}\right)^{202}x\ dx} =\frac{p}{q}

Evaluate p q p-q , given that they are relatively primes.

1 4 7 2 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Patrick Corn
Nov 14, 2017

Make the substitution t = 1 x 2 t=1-x^2 on top and bottom, and simplify, to get 0 1 ( 1 t 100 ) 201 d t 0 1 ( 1 t 100 ) 202 d t . \frac{\int\limits_0^1 (1-t^{100})^{201} \, dt}{\int\limits_0^1 (1-t^{100})^{202} \, dt}. Let I a , b = 0 1 ( 1 t a ) b d t . I_{a,b} = \int\limits_0^1 (1-t^a)^b \, dt. Let's evaluate I a , b I_{a,b} by integrating by parts, letting u = ( 1 t a ) b u = (1-t^a)^b and d v = d t . dv = dt. I a , b = 0 1 ( 1 t a ) b d t = t ( 1 t a ) b 0 1 + a b 0 1 t a ( 1 t a ) b 1 d t . I_{a,b} = \int\limits_0^1 (1-t^a)^b \, dt = t(1-t^a)^b \bigg|_0^1 + ab\int\limits_0^1 t^a(1-t^a)^{b-1} \, dt. The first term on the right side is zero. Note that if we add a b I a , b abI_{a,b} to the second term, we get a b 0 1 ( 1 t a ) ( 1 t a ) b 1 d t + a b 0 1 t a ( 1 t a ) b 1 d t = a b 0 1 ( 1 t a ) b 1 d t = a b I a , b 1 . ab \int\limits_0^1 (1-t^a)(1-t^a)^{b-1} \, dt + ab \int\limits_0^1 t^a(1-t^a)^{b-1} \, dt = ab \int\limits_0^1 (1-t^a)^{b-1} \, dt = abI_{a,b-1}. That is, a b I a , b + I a , b = a b I a , b 1 . abI_{a,b} + I_{a,b} = ab I_{a,b-1}. So I a , b 1 I a , b = a b + 1 a b . \frac{I_{a,b-1}}{I_{a,b}} = \frac{ab+1}{ab}. When a , b a,b are integers (here a = 100 , b = 202 a=100,b=202 ), the numerator and denominator are relatively prime, so the difference is 1 . \fbox{1}.

Mark Hennings
Nov 14, 2017

The integral I m , n = 0 1 ( 1 ( 1 x 2 ) m ) n x d x = 1 2 0 1 ( 1 ( 1 x ) m ) n d x = 1 2 0 1 ( 1 x m ) n d x = 1 2 m 0 1 y 1 m 1 ( 1 y ) n d y = 1 2 m B ( 1 m , n + 1 ) \begin{aligned} I_{m,n} & = \; \int_0^1 \big(1 - (1 - x^2)^m\big)^n\,x\,dx \; = \; \tfrac12\int_0^1 \big(1 - (1 - x)^m\big)^n\,dx \; = \; \tfrac12\int_0^1 (1 - x^m)^n\,dx \\ & = \; \frac{1}{2m}\int_0^1 y^{\frac{1}{m}-1}(1-y)^n\,dy \; = \; \tfrac{1}{2m}B(\tfrac{1}{m},n+1) \end{aligned} for any positive integers m , n m,n , using the substitution y = x m y = x^m . Thus I m , n I m , n + 1 = B ( 1 m , n + 1 ) B ( 1 m , n + 2 ) = Γ ( 1 m ) Γ ( n + 1 ) Γ ( 1 m + n + 2 ) Γ ( 1 m + n + 1 ) Γ ( 1 m ) Γ ( n + 2 ) = 1 m + n + 1 n + 1 = m ( n + 1 ) + 1 m ( n + 1 ) \frac{I_{m,n}}{I_{m,n+1}} \; = \; \frac{B(\tfrac{1}{m},n+1)}{B(\tfrac{1}{m},n+2)} \; = \; \frac{\Gamma(\tfrac{1}{m})\Gamma(n+1)\Gamma(\tfrac{1}{m}+n+2)}{\Gamma(\tfrac{1}{m}+n+1) \Gamma(\tfrac{1}{m})\Gamma(n+2)} \; =\; \frac{\tfrac{1}{m}+n+1}{n+1} \; = \; \frac{m(n+1) + 1}{m(n+1)} so that p = m ( n + 1 ) + 1 p=m(n+1)+1 , q = m ( n + 1 ) q = m(n+1) are coprime and p q = 1 p-q = \boxed{1} .

Thanks Mark hennings, you guided me a new way to the problem.

Aman Joshi - 3 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...