∫ 0 1 ( 1 − ( 1 − x 2 ) 1 0 0 ) 2 0 2 x d x ∫ 0 1 ( 1 − ( 1 − x 2 ) 1 0 0 ) 2 0 1 x d x = q p
Evaluate p − q , given that they are relatively primes.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The integral I m , n = ∫ 0 1 ( 1 − ( 1 − x 2 ) m ) n x d x = 2 1 ∫ 0 1 ( 1 − ( 1 − x ) m ) n d x = 2 1 ∫ 0 1 ( 1 − x m ) n d x = 2 m 1 ∫ 0 1 y m 1 − 1 ( 1 − y ) n d y = 2 m 1 B ( m 1 , n + 1 ) for any positive integers m , n , using the substitution y = x m . Thus I m , n + 1 I m , n = B ( m 1 , n + 2 ) B ( m 1 , n + 1 ) = Γ ( m 1 + n + 1 ) Γ ( m 1 ) Γ ( n + 2 ) Γ ( m 1 ) Γ ( n + 1 ) Γ ( m 1 + n + 2 ) = n + 1 m 1 + n + 1 = m ( n + 1 ) m ( n + 1 ) + 1 so that p = m ( n + 1 ) + 1 , q = m ( n + 1 ) are coprime and p − q = 1 .
Thanks Mark hennings, you guided me a new way to the problem.
Problem Loading...
Note Loading...
Set Loading...
Make the substitution t = 1 − x 2 on top and bottom, and simplify, to get 0 ∫ 1 ( 1 − t 1 0 0 ) 2 0 2 d t 0 ∫ 1 ( 1 − t 1 0 0 ) 2 0 1 d t . Let I a , b = 0 ∫ 1 ( 1 − t a ) b d t . Let's evaluate I a , b by integrating by parts, letting u = ( 1 − t a ) b and d v = d t . I a , b = 0 ∫ 1 ( 1 − t a ) b d t = t ( 1 − t a ) b ∣ ∣ ∣ ∣ 0 1 + a b 0 ∫ 1 t a ( 1 − t a ) b − 1 d t . The first term on the right side is zero. Note that if we add a b I a , b to the second term, we get a b 0 ∫ 1 ( 1 − t a ) ( 1 − t a ) b − 1 d t + a b 0 ∫ 1 t a ( 1 − t a ) b − 1 d t = a b 0 ∫ 1 ( 1 − t a ) b − 1 d t = a b I a , b − 1 . That is, a b I a , b + I a , b = a b I a , b − 1 . So I a , b I a , b − 1 = a b a b + 1 . When a , b are integers (here a = 1 0 0 , b = 2 0 2 ), the numerator and denominator are relatively prime, so the difference is 1 .