How to Select Number

In how many ways can we select three numbers from the set A = { 1 , 3 , 5 , . . . , 19 } A=\{1,3,5,...,19\} such that no two numbers have a difference of 2?

^* For any a 1 , a 2 , a 3 a_1,a_2,a_3 that we selected a i a j 2 |a_i-a_j|\ne2

72 120 56 35 24

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Achmad Damanhuri
Apr 8, 2019

We change the prob to the correspondence prob such that, Let B = { 1 , 2 , 3 , . . . , 10 } B=\{1,2,3,...,10\} we are going to select three number such that no two consecutive number. We will set the selected number a 1 < a 2 < a 3 a_1<a_2<a_3 ; 1 < a i < 10 1<a_i<10 but in this case there would be ( 1 , 2 , 3 ) , e t c . (1,2,3), etc. among the selected number. So we take b 1 = a 1 b_1=a_1 ; b 2 = a 2 + 1 b_2=a_2+1 ; b 3 = a 3 + 2 b_3=a_3+2 so that there are no two consecutive number. So now we can choose freely b 1 , b 2 , b 3 b_1,b_2,b_3 from 1 < b i < 8 1<b_i<8 The answer is C 3 8 = 56 C^{8}_3=56

@Achmad Damanhuri , do you make your questions yourself ? From where do you get the idea ?

Mr. India - 2 years, 2 months ago

Most of them is mine, a few other i just peek it from somewhere after changing it a little. Mostly the idea came from the curiousity (question) of my student in my class, the way they asked made me see the problem from different perspective.

Achmad Damanhuri - 2 years, 2 months ago

Oh , so you are a teacher. Your questions are great!

Mr. India - 2 years, 2 months ago

A = { 1 , 3 , 5 , , 19 } (Given) Divide A into 2 sets B and C such that, B = { 1 , 5 , 9 , 13 , 17 } C = { 3 , 7 , 11 , 15 , 19 } B and C are complementary sets under A The only way to pick a 1 , a 2 , a 3 so that a i a j 2 is, Case-1: When all 3 elements are picked from one of the sets B or C This can be done in 5 C 3 + 5 C 3 = 20 ways Case-2: When 1 element is picked from one of the sets and 2 from the other one. Since, a i a j 2 If an element is picked you cannot pick any of its neighbors in the original set A Also,an element and its neighbor cannot fall in the same set B or C 1 , 19 has only 1 neighbor in the complementary set. If 1 or 19 was chosen as the first element ,then There are 4 C 2 ways to choose the other 2 elements from the complementary set. Thus triples involving 1 or 19 as the first element can be chosen in 2 × 4 C 2 = 12 ways All elements other than1,19 has 2 neighbors in the complementary set. If one of the elements other than 1,19 was chosen as the first element ,then There are 3 C 2 ways to choose the remaining 2 elements from the complementary set. Thus triples not involving 1,19 as the first element can be chosen in 8 × 3 C 2 = 24 ways Thus the total number of ways for choosing 3 elements is given by, Number of ways = 20 + 12 + 24 = 56 ways \begin{aligned}A&=\{1, 3, 5, \dots,19\}\hspace{4mm}\color{#3D99F6}\small \text{(Given)}\\\\ &\text{Divide A into } 2\text{ sets B and C such that,}\\\\ B&=\{1, 5, 9,13,17\}\\ C&=\{3, 7, 11,15,19\}\\ &\text{B and C are complementary sets under A}\\\\ &\text{The only way to pick } a_{1},a_{2},a_{3} \text{ so that } \lvert{a_{i}-a_{j}\rvert\neq2}\text{ is,}\\\\ &\underline{\text{Case-1:}}\hspace{2mm}\text{When all 3 elements are picked from one of the sets B or C}\\\\ &\text{This can be done in}\\ &^5C_3+^5C_3 =20 \text{ ways}\\\\ &\underline{\text{Case-2:}}\hspace{2mm}\text{When 1 element is picked from one of the sets and 2 from the other one.}\\\\ &\text{Since,}\lvert{a_{i}-a_{j}\rvert\neq2}\\ \implies&\text{If an element is picked you cannot pick any of its neighbors in the original set A}\\ &\text{Also,an element and its neighbor cannot fall in the same set B or C}\\\\ &1,19 \text{ has only 1 neighbor in the complementary set.}\\ &\text{If 1 or 19 was chosen as the first element ,then}\\ &\text{There are } ^4C_2 \text{ways to choose the other 2 elements from the complementary set.}\\ &\text{Thus triples involving 1 or 19 as the first element can be chosen in } 2\times^4C_2=12 \text{ ways}\\\\ &\text{All elements other than1,19} \text{ has 2 neighbors in the complementary set.}\\ &\text{If one of the elements other than 1,19 was chosen as the first element ,then}\\ &\text{There are } ^3C_2 \text{ways to choose the remaining 2 elements from the complementary set.}\\ &\text{Thus triples not involving 1,19 as the first element can be chosen in } 8\times^3C_2=24 \text{ ways}\\\\ &\text{Thus the total number of ways for choosing 3 elements is given by,}\\ &\text{Number of ways}=20+12+24\\ &\hspace{31mm}=\color{#EC7300}\boxed{\color{#333333}56} \color{#333333}\text{ ways}\end{aligned}

Vu Van Luan
Apr 17, 2019

1 8 28 56 1 7 21 35 1 6 15 20 1 5 10 10 1 4 6 4 1 3 3 1 1 2 1 1 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...