Do I need to solve the sides?

Geometry Level 2

If we are given that B C = 1 , A C = 4 BC = 1, AC = 4 and cos ( α + β ) = 4 5 \cos( \alpha + \beta) = \frac 45 , find the value of sin ( α ) \sin( \alpha) .

1 6 \frac16 2 3 \frac23 2 5 \frac25 3 5 \frac35 1 5 \frac15

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

At first, I drew a height from D D to A B \overline{AB} , intersecting at F F so B D F = α + β \angle BDF=\alpha + \beta . We have c o s ( α + β ) = 4 5 = E D cos(\alpha +\beta)=\frac{4}{5}=\overline{ED} s i n ( α ) = 4 5 4 = 1 5 \rightarrow sin(\alpha)=\frac{\frac{4}{5}}{4} = \frac{1}{5}

Paola Ramírez
Jun 15, 2015

A B C = 90 ( α + β ) \angle ABC=90-(\alpha+\beta)

Appliying sine law at A B C \triangle ABC , sin α B C = sin ( 90 ( α + β ) ) A C sin α 1 = sin ( 90 ( α + β ) ) 4 \frac{\sin\alpha}{BC}=\sin{(90-(\alpha+\beta))}{AC}\Rightarrow\frac{\sin\alpha}{1}=\frac{\sin{(90-(\alpha+\beta))}}{4} but sin ( 90 ( α + β ) ) = cos ( 90 ( α + β ) ) \sin (90-(\alpha+\beta))=\cos(90-(\alpha+\beta))

sin α = cos ( α + β ) 4 = 4 5 × 1 4 = 1 5 \therefore \sin\alpha=\frac{\cos (\alpha+\beta)}{4}=\frac{4}{5}\times \frac{1}{4}=\boxed{\frac{1}{5}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...