A calculus problem by Aly Ahmed

Calculus Level 3

0 x ln x 1 + e x d x = ? \large \int_0^\infty \dfrac{x\ln x}{1 + e^x} \, dx = \, ?


The answer is 0.4490.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
May 22, 2020

Note that F ( u ) = 0 x u e x + 1 d x = n = 0 ( 1 ) n 0 x u e ( n + 1 ) x d x = n = 0 ( 1 ) n ( n + 1 ) u + 1 0 y u e y d y = n = 0 ( 1 ) n ( n + 1 ) u + 1 Γ ( u + 1 ) = ( 1 2 u ) ζ ( u + 1 ) Γ ( u + 1 ) \begin{aligned} F(u) & = \; \int_0^\infty \frac{x^u}{e^x + 1}\,dx \; = \; \sum_{n=0}^\infty (-1)^n \int_0^\infty x^u e^{-(n+1)x}\,dx \; =\; \sum_{n=0}^\infty \frac{(-1)^n}{(n+1)^{u+1}} \int_0^\infty y^u e^{-y}\,dy \\ & = \; \sum_{n=0}^\infty \frac{(-1)^n}{(n+1)^{u+1}}\,\Gamma(u+1) \; = \; (1 - 2^{-u})\zeta(u+1)\Gamma(u+1) \end{aligned} for u > 0 u > 0 , so that 0 x ln x e x + 1 d x = F ( 1 ) = 1 2 ln 2 ζ ( 2 ) Γ ( 2 ) + 1 2 ζ ( 2 ) Γ ( 2 ) + 1 2 ζ ( 2 ) Γ ( 2 ) = 1 12 π 2 ln 2 + 1 2 ζ ( 2 ) + 1 12 π 2 Γ ( 2 ) \int_0^\infty \frac{x \ln x}{e^x + 1}\,dx \; =\; F'(1) \; = \; \tfrac12\ln2 \,\zeta(2)\Gamma(2) + \tfrac12\zeta'(2)\Gamma(2) + \tfrac12\zeta(2)\Gamma'(2) \; = \; \tfrac{1}{12}\pi^2\ln2 + \tfrac12\zeta'(2) + \tfrac{1}{12}\pi^2\Gamma'(2) Now standard results give Γ ( 2 ) = 1 γ ζ ( 2 ) = 1 6 π 2 ( γ + ln 2 π 12 ln A ) \begin{aligned} \Gamma'(2) & = \; 1 - \gamma \\ \zeta'(2) & = \; \tfrac16\pi^2(\gamma + \ln2\pi - 12\ln A) \end{aligned} where γ \gamma is the Euler-Mascheroni constant and A A is the Glaisher-Kinkelin constant, and hence 0 x ln x e x + 1 d x = 1 12 π 2 ( 1 + ln 4 π 12 ln A ) = 0.449043 \int_0^\infty \frac{x \ln x}{e^x + 1}\,dx \; = \; \tfrac{1}{12}\pi^2(1 + \ln4\pi - 12\ln A) \; = \; \boxed{0.449043}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...