How well do you know 2017 ? \sqrt{2017}?

Algebra Level 4

f ( x ) = { 0 + β : x 0 m o d 3 1 + β : x 1 m o d 3 2 + β : x 2 m o d 3 f(x) = \begin{cases} 0 + \beta \ : \ \lfloor x \rfloor \equiv 0 \mod 3 \\ 1 + \beta \ : \ \lfloor x \rfloor \equiv 1 \mod 3 \\ 2 + \beta \ : \ \lfloor x \rfloor \equiv 2 \mod 3 \\ \end{cases}

There is a unique value of β \beta such that n = 1 f ( 3 n 2017 ) 3 n = 0. \displaystyle \sum_{n=1}^{\infty} \frac{f \left( 3^{n}\sqrt{2017} \right)}{3^{n}} = 0. This value of β \beta can be expressed as a b c , a-b\sqrt{c}, where a , b , a,\ b, and c c are positive integers and c c is square-free. Find a + b + c . a + b + c .


The answer is 2107.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Arjen Vreugdenhil
Nov 12, 2017

Define f 0 ( x ) = { 0 if x 0 mod 3 1 if x 1 mod 3 2 if x 2 mod 3 f_0(x) = \begin{cases} 0 & \text{if}\ \lfloor x \rfloor \equiv 0\ \text{mod}\ 3 \\ 1 & \text{if}\ \lfloor x \rfloor \equiv 1\ \text{mod}\ 3 \\ 2 & \text{if}\ \lfloor x \rfloor \equiv 2\ \text{mod}\ 3 \end{cases} Then f ( x ) = α ( f 0 ( x ) + β ) f(x) = \alpha(f_0(x) + \beta) , and the given sum is α ( n = 1 f 0 ( 3 n 2017 ) 3 n + β n = 1 1 3 n ) . \alpha \left(\sum_{n=1}^\infty \frac{f_0(3^n\sqrt{2017})}{3^n} + \beta \sum_{n=1}^\infty \frac 1{3^n} \right). Since f 0 ( 3 n N ) f_0(3^{-n} N) is precisely the n n th digit in the ternary representation of N N , the bracketed term on the left is equal to the fractional part of 2017 \sqrt{2017} , which is equal to 2017 44 \sqrt{2017}-44 .

Next, note that n = 1 1 / 3 n = 1 / 2 \sum_{n=1}^\infty 1/3^n = 1/2 .

Combining these, the sum simplifies as α ( [ 2017 44 ] + 1 2 β ) = 0 ; \alpha\left(\left[\sqrt{2017} - 44\right] + \tfrac12\beta\right) = 0; β = 2 ( 2017 44 ) = 88 2 2017 , \beta = -2(\sqrt{2017} - 44) = 88 - 2\sqrt{2017}, so we post a + b + c = 88 + 2 + 2017 = 2107 a + b + c = 88 + 2 + 2017 = \boxed{2107} .

Brandon Monsen
Oct 29, 2017

Consider the ternary expansion of 2017 \sqrt{2017} .

2017 = 44 + k = 1 a k 3 k \sqrt{2017} = 44 + \sum_{k=1}^{\infty} \frac{a_{k}}{3^{k}}

Where a k { 0 , 1 , 2 } a_{k} \in \{0,1,2 \} . If follows that

3 n 2017 = 44 × 3 n + 3 n 1 a 1 + 3 n 2 a 2 + + 3 a n 1 + a n + 3 1 a n + 1 + = 44 × 3 n + 3 n 1 a 1 + 3 n 2 a 2 + + a n \lfloor 3^{n}\sqrt{2017} \rfloor = \lfloor 44 \times 3^{n} + 3^{n-1}a_{1} + 3^{n-2}a_{2} + \ldots + 3a_{n-1}+a_{n}+3^{-1}a_{n+1} + \ldots \rfloor = 44 \times 3^{n} + 3^{n-1}a_{1} + 3^{n-2}a_{2} + \ldots + a_{n}

(Since i = n + 1 a i 3 i < 1 \sum_{i=n+1}^{\infty} \frac{a_{i}}{3^{i}}<1 if a j < 2 a_{j}<2 for any j > n + 1 j>n+1 . This is the case since otherwise 3 n 2017 3^{n}\sqrt{2017} is an integer, which is impossible)

Since all terms except a n a_{n} are multiplied by a power of 3 3 , the value of f ( 3 n 2017 ) f \left( 3^{n}\sqrt{2017} \right) is determined exclusively by the value of a n a_{n} . It is easy to then see that f ( 3 n 2017 ) = a n + β f \left( 3^{n}\sqrt{2017} \right) = a_{n}+\beta

We then get that our sum is

0 = n = 1 f ( 3 n 2017 ) 3 n = n = 1 a n + β 3 n = β 2 + n = 1 a n 3 n 0 = \sum_{n=1}^{\infty} \frac{f \left( 3^{n}\sqrt{2017} \right) }{3^{n}} = \sum_{n=1}^{\infty} \frac{a_{n} + \beta}{3^{n}} = \frac{\beta}{2} + \sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}}

Our last infinite sum is easily evaluated by how we defined a n a_{n}

0 = ( 2017 44 ) + β 2 β = 88 2 2017 0 = \left( \sqrt{2017}-44 \right) + \frac{\beta}{2} \Rightarrow \beta = 88-2\sqrt{2017}

And so we get that a + b + c = 2107 a+b+c = \boxed{2107}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...