How well do you know the rules?

Algebra Level 1

Given that x = 2 k x={ 2 }^{ k } and 4 x = 2 c \sqrt { \dfrac { 4 }{ x } } ={ 2 }^{ c } , express c c in terms of k k .

1 2 k 1 -\frac { 1 }{ 2 } k-1 1 2 k + 1 -\frac { 1 }{ 2 } k+1 1 2 k 1 \frac { 1 }{ 2 } k-1 1 2 k + 1 \frac { 1 }{ 2 } k+1 k 2 \sqrt { \frac { k }{ 2 } }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Patryk Korczak
Dec 22, 2015

4 x = 2 c \sqrt { \frac { 4 }{ x } } ={ 2 }^{ c }

2 x = 2 c { \frac { 2 }{ \sqrt { x } } } ={ 2 }^{ c }

2 x 1 2 = 2 c 2{ x }^{ -\frac { 1 }{ 2 } }={ 2 }^{ c }

2 ( 2 k ) 1 2 = 2 c 2{ \left( { 2 }^{ k } \right) }^{ -\frac { 1 }{ 2 } }={ 2 }^{ c }

2 × 2 1 2 k = 2 c 2\times 2^{ -\frac { 1 }{ 2 } k }={ 2 }^{ c }

2 1 2 k + 1 = 2 c 2^{ -\frac { 1 }{ 2 } k+1 }={ 2 }^{ c }

1 2 k + 1 = c \therefore { -\frac { 1 }{ 2 } k+1 }={ c }

Moderator note:

Simple standard approach.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...