How will I find them individually?

Find the value of a 0 + a 1 + a 2 a_{0}+a_{1}+a_{2} if

( 1 + 3 x + 4 x 2 ) 20 = a 0 + a 1 x + a 2 x 2 + . . . + a 40 x 40 \large \left(1+3x+4x^2\right)^{20}=a_{0}+a_{1}x+a_{2}x^2+...+a_{40}x^{40}


The answer is 1851.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Patrick Corn
Nov 15, 2017

Clearly a 0 = 1 , a_0 = 1, and a 1 = 3 20 = 60. a_1 = 3 \cdot 20 = 60. There are two ways to get x 2 x^2 in the expansion: two copies of 3 x 3x and eighteen of 1 , 1, or one copy of 4 x 2 4x^2 and nineteen of 1. 1. The former adds up to 9 ( 20 2 ) x 2 9\binom{20}{2}x^2 and the latter adds up to 4 20 x 2 , 4 \cdot 20x^2, so the sum is 1790 x 2 . 1790x^2. Thus the answer is 1 + 60 + 1790 = 1851 . 1+60+1790 = \fbox{1851}.

(If you wanted, you could also use Taylor series.)

Chew-Seong Cheong
Nov 23, 2017

( 1 + 3 x + 4 x 2 ) 20 = ( 1 + x ( 3 + 4 x ) ) 20 = 1 + 20 x ( 3 + 4 x ) + 20 × 19 2 x 2 ( 3 + 4 x ) 2 + + x 20 ( 3 + 4 x ) 20 = 1 + 60 x + 80 x 2 + 190 x 2 ( 9 + 24 x + 16 x 2 ) + + x 20 ( 3 + 4 x ) 20 = 1 + 60 x + 80 x 2 + 1710 x 2 + + x 20 ( 3 + 4 x ) 20 = 1 + 60 x + 1790 x 2 + + x 20 ( 3 + 4 x ) 20 \begin{aligned} \left(1+3x+4x^2\right)^{20} & = \left(1+x(3+4x) \right)^{20} \\ & = 1 + 20x(3+4x)+ \frac {20\times 19}2 x^2(3+4x)^2 + \cdots + x^{20}(3+4x)^{20} \\ & = 1 + 60x+80x^2+ 190 x^2(9+24x+16x^2) + \cdots + x^{20}(3+4x)^{20} \\ & = 1 + 60x+80x^2+ 1710 x^2 + \cdots + x^{20}(3+4x)^{20} \\ & = 1 + 60x + 1790 x^2 + \cdots + x^{20}(3+4x)^{20} \end{aligned}

a 0 + a 1 + a 2 = 1 + 60 + 1790 = 1851 \implies a_0+a_1+a_2 = 1 + 60 + 1790 = \boxed{1851}

Md Zuhair
Nov 16, 2017

Best solution for this will be like this.

Setting x=0, we get 1 = a 0 1=a_{0} .

So a 0 = 1 a_{0}=1 .

Now for a 1 a_{1} , differentiating the expression,

d ( 1 + 3 x + 4 x 2 ) 20 d x = 0 + a 1 + 2 a 2 x + . . . + n a n x n 1 \dfrac{d(1+3x+4x^2)^{20}}{dx}=0+a_{1}+2a_{2}x+...+na_{n}x^{n-1}

20. ( 1 + 3 x + 4 x 2 ) 19 . ( 3 + 8 x ) = a 1 + 2 a 2 x + . . n a n x n 1 \implies 20.(1+3x+4x^2)^{19}.(3+8x)=a_{1}+2a_{2}x+..na_{n}x^{n-1} .

Set x = 0 x=0 for the expression we got,

20. ( 1 ) 19 . 3 = a 1 \implies 20.(1)^{19}.3=a_{1}

a 1 = 60 \implies a_{1}=60 .

Again differentiating the differentiated expression, we will get,

20 [ 19. ( 1 + 3 x + 4 x 2 ) 18 . ( 3 + 8 x ) + 8. ( 1 + 3 x + 4 x 2 ) 19 = 0 + 0 + 2 a 2 + 3.2 a 3 x + . . . 20[19.(1+3x+4x^{2})^{18}.(3+8x)+8.(1+3x+4x^{2})^{19}=0+0+2a_{2}+3.2a_{3}x+...

Setting x=0, and then solving for a 2 a_{2} we get a 2 = 1790 a_{2}=1790 .

So a 0 + a 1 + a 2 = 1851 \boxed{\boxed{\boxed{\boxed{a_{0}+a_{1}+a_{2}=1851}}}}

Hey , bro did the same and yes its the best ¨ \ddot\smile . Btw, triple boxed doesn't look nice :P (LOL) (+1)

Rishu Jaar - 3 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...