How will you approach this?

Calculus Level 4

If n n is a positive integer, find the value of 0 π sin [ ( n + 1 2 ) x ] sin ( x 2 ) d x \displaystyle \int_0^\pi \dfrac{ \sin \left [ \left(n+ \frac12 \right) x\right ] }{\sin \left( \frac x2 \right)} \, dx in terms of n n .

π \pi π / 2 \pi /2 n π / 2 n\pi /2 n π n\pi

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Iryan Bhzy
Feb 19, 2016

Let us rewrite the sine functions using Euler's identity sin x = e i x e i x 2 i = e 2 i x 1 2 i e i x \sin x = \cfrac{\mathrm{e}^{ix} - \mathrm{e}^{-ix}}{2i} = \cfrac{\mathrm{e}^{2ix} - 1}{2i\mathrm{e}^{ix}} (the latter received by multiplying the numerator and the denominator by e i x e^{ix} );

Step 1: 0 π sin ( n + 1 2 ) x sin ( x 2 ) d x = 0 π e ( 2 n + 1 ) i x 1 2 i e ( n + 1 2 ) i x 2 i e i x 2 e i x 1 d x \displaystyle\int _{ 0 }^{ \pi }{ \cfrac { \sin\left( n+\cfrac { 1 }{ 2 } \right) x }{ \sin(\frac {x}{2} ) } } \mathrm {d} x = \int _{0}^{\pi}{\cfrac{\mathrm{e}^{(2n+1)ix} - 1}{2i\mathrm{e}^{(n+\frac{1}{2})ix}} \cfrac{2i\mathrm{e}^{\frac{ix}{2}}}{\mathrm{e}^{ix} - 1} \mathrm{d}x} ;

Step 2: The 2 i 2i 's cancel out and we use a property of exponents to receive 0 π ( e i x n ) ( e ( 2 n + 1 ) i x 1 ) e i x 1 d x \displaystyle\int _{0}^{\pi}{\cfrac{(\mathrm{e}^{-ixn})(\mathrm{e}^{(2n+1)ix} - 1)}{\mathrm{e}^{ix} - 1} \mathrm{d}x}

The integrand resembles a formula for the sum of geometric series up to the n n -th term: S n = i = 1 n b i = b 1 ( 1 q n ) 1 q S_n = \sum\limits_{i=1}^n b_i = \cfrac{ b_1 (1 - q^{n} ) }{ 1-q } , where b 1 b_1 is the first term of the series and q q is its common ratio. In this case we have the sum of geometric series up to the 2 n + 1 2n+1 -th term with the first term being e i x n \mathrm{e}^{-ixn} and the common ratio being e i x e^{ix} ;

Step 3: We rewrite the geometric series as a sum to get 0 π k = 1 2 n + 1 e i x ( n k + 1 ) d x = 0 π ( e i x n + e i x ( n 1 ) + + e i x ( n 1 ) + e i x n ) d x \displaystyle\int_{0}^{\pi}{ \sum\limits_{k=1}^{2n+1} \mathrm{e}^{-ix(n-k+1)}} \mathrm{d}x = \displaystyle\int _{0}^{\pi}{(\mathrm{e}^{-ixn} + \mathrm{e}^{-ix(n-1)} + \dots + \mathrm{e}^{ix(n-1)} + \mathrm{e}^{ixn})} \mathrm{d}x

Step 4: To deal with this one, we need to use Euler's identity for the cosine function: cos x = e i x + e i x 2 \cos x = \cfrac{\mathrm{e}^{ix} + \mathrm{e}^{-ix}}{2} ; we also have to keep in mind that one of the terms is e i x ( n n ) = e 0 = 1 \mathrm{e}^{-ix(n-n)} = \mathrm{e}^0 = 1 0 π ( 2 cos n x + 2 cos ( n 1 ) x + + 2 cos x + 1 ) d x \displaystyle\int _{0}^{\pi}{(2\cos{nx} + 2\cos{(n-1)}x + \dots + 2\cos{x} + 1 )} \mathrm{d}x

Step 5: We use the sum rule for definite integrals to separate each term: 0 π 2 cos n x d x + 0 π 2 cos ( n 1 ) x d x + + 0 π 2 cos x d x + 0 π 1 d x \displaystyle\int _{0}^{\pi}{2\cos{nx}} \mathrm{d}x + \displaystyle\int _{0}^{\pi}{2\cos{(n-1)x}} \mathrm{d}x + \dots + \displaystyle\int _{0}^{\pi}{2\cos{x}} \mathrm{d}x + \displaystyle\int_{0}^{\pi} 1 \mathrm{d}x

Now instead of integrating every cosine, notice that we can rewrite any of them as 2 cos k x 2\cos{kx} where k k is a natural number from 1 to n n since n n is natural.

0 π 2 cos k x d x = 2 k sin k x 0 π = 2 k sin π k 2 k sin 0 = 0 \displaystyle\int_0^{\pi}{2\cos{kx}} \mathrm{d}x = \frac{2}{k} \sin{kx}|_0^{\pi} = \frac {2}{k}\sin{\pi k} - \frac {2}{k} \sin{0} = 0

This means that all of the integrals which include cosines equal zero. Now we are only left with 0 π 1 d x \displaystyle\int_{0}^{\pi} 1 \mathrm{d}x = π \pi which is the answer.

Great solution! (+1)

Harsh Khatri - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...