How will you Integrate it?

Calculus Level 5

( 1 f ( x ) ) f ( x + π ) = 1 + f ( x ) (1 - f(x)) f(x+ \pi) = 1 + f(x)

Let f ( x ) f(x) be a function such that f : R R { 1 } f: \mathbb R \rightarrow \mathbb R -\{1\} that satisfy the functional equation above, and that π 5 π f ( x ) d x = 2 \displaystyle \int_\pi^{5\pi} f(x) \, dx = 2 . Find the value of 3 π 2015 π f ( x ) d x \displaystyle \int_{3\pi}^{2015\pi} f(x) \, dx .


The answer is 1006.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Satyajit Mohanty
Jul 11, 2015

Chew-Seong Cheong
Sep 20, 2015

( 1 f ( x ) ) f ( x + π ) = 1 + f ( x ) f ( x + π ) = 1 + f ( x ) 1 f ( x ) f ( [ x + π ] + π ) = 1 + f ( x + π ) 1 f ( x + π ) f ( x + 2 π ) = 1 + 1 + f ( x ) 1 f ( x ) 1 1 + f ( x ) 1 f ( x ) = 1 f ( x ) + 1 + f ( x ) 1 f ( x ) 1 f ( x ) = 2 2 f ( x ) f ( x + 2 π ) = 1 f ( x ) f ( x ) = 1 f ( x + 2 π ) f ( x + 5 π ) = 1 f ( x + 3 π ) = f ( x + π ) f ( x ) = f ( x + 4 π ) f ( x ) is a periodic function with a period of 4 π . \begin{aligned} \left(1-f(x)\right)f(x+\pi) & = 1 + f(x) \\ f(x+\pi) & = \frac{1+f(x)}{1-f(x)} \\ \Rightarrow f([x+\pi] + \pi) & = \frac{1+f(x+\pi)}{1-f(x+\pi)} \\ f(x+2\pi) & = \frac{1+ \frac{1+f(x)}{1-f(x)}}{1-\frac{1+f(x)}{1-f(x)}} = \frac{1-f(x)+1+f(x)}{1-f(x)-1-f(x)} = \frac{2}{-2f(x)} \\ \Rightarrow f(x+2\pi) & = - \frac{1}{f(x)} \\ f(x) & = - \frac{1}{f(x+2\pi)} \\ \\ \Rightarrow f(x + 5\pi) & = - \frac{1}{f(x+ 3 \pi)} = f(x + \pi) \\ \Rightarrow f(x) & = f(x+\color{#3D99F6}{4\pi}) \quad \color{#3D99F6}{\Rightarrow f(x) \text{ is a periodic function with a period of } 4 \pi.} \end{aligned}

Since π 5 π f ( x ) d x = 2 \displaystyle \int_\pi^{5\pi} f(x) \space dx = 2 , integral of f ( x ) f(x) over every 4 π 4\pi has a value of 2 2 .

Therefore, 3 π 2015 π f ( x ) d x = 2015 3 4 × 2 = 1006 \displaystyle \int_{3\pi}^{2015 \pi} f(x) \space dx = \frac{2015-3}{4} \times 2 = \boxed{1006}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...