How will you solve this?

Calculus Level 5

0 e x 2 ln ( x ) d x = A B ( γ C + D ln ( D ) ) π E \large \displaystyle \int_0 ^ \infty e^{-x^2} \ln(x)\ \mathrm{d}x = -\dfrac{A}{B}\left( \gamma^C +D\ln(D) \right)\pi^E

If the above equation is true for positive integers A , B , C , D A,B,C,D , where A , B A,B are coprime to each other and D D isn't any m t h m^{th} power of a positive integer with m Z , m 2 m \in \mathbb Z,\ m \geq 2 .

Submit the value of A + B + C + D + 2 E A+B+C+D+2E as your answer.


Note: γ \gamma is the Euler-Mascheroni Constant defined as:

γ = lim n ( k = 1 n 1 k ln ( n ) ) \large \gamma =\lim_{n \rightarrow \infty} \left(\displaystyle \sum_{k=1} ^{n} \dfrac{1}{k} -\ln(n) \right)


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kunal Gupta
Sep 27, 2015

Consider the integral, I ( a ) = 0 x a e x 2 d x I(a)= \displaystyle \int_{0}^{\infty}x^{a}e^{-x^2}dx Setting, x 2 x x^2 \rightarrow x I ( a ) = 1 2 0 x a 1 2 e x d x = 1 2 Γ ( a + 1 2 ) I(a)= \dfrac{1}{2}\displaystyle \int_{0}^{\infty}x^{\frac{a-1}{2}}e^{-x}dx = \dfrac{1}{2}\Gamma\left(\dfrac{a+1}{2}\right) Clearly, our required integral is the following when a = 0 a=0 I ( a ) a = 0 x a ln ( x ) e x 2 d x \dfrac{\partial I(a)}{\partial a} =\displaystyle \int_{0}^{\infty}x^{a}\ln{(x)}e^{-x^2}dx
I ( a ) = 1 4 Γ ( a + 1 2 ) = 1 4 Γ ( a + 1 2 ) ψ ( a + 1 2 ) I'(a)= \dfrac{1}{4}\Gamma'\left(\dfrac{a+1}{2}\right) = \dfrac{1}{4}\Gamma\left(\dfrac{a+1}{2}\right)\psi\left(\dfrac{a+1}{2}\right) where ψ ( n ) \psi(n) is the Digamma Function Plugging a = 0 a=0 I ( 0 ) = 1 4 π ψ ( 1 2 ) I'(0) = \dfrac{1}{4}\sqrt{\pi}\psi(\frac{1}{2}) Using the fact that ψ ( 1 / 2 ) = 2 ln ( 2 ) γ \psi(1/2) = -2\ln(2) - \gamma I ( 0 ) = 1 4 ( γ + 2 ln ( 2 ) ) π I'(0) = -\dfrac{1}{4}\left( \gamma +2\ln(2) \right)\sqrt{\pi}

I too did exactly in the same way.

Surya Prakash - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...