A calculus problem by Yuri Lombardo

Calculus Level 4

Determine the value of the limit below:

lim n ( 2 n n ) n \lim_{n\to\infty} \sqrt[n]{ 2n \choose n}

Answer 666 if you think that the limit doesn't exist.

Notation: ( M N ) = M ! N ! ( M N ) ! \dbinom MN = \dfrac {M!}{N! (M-N)!} denotes the binomial coefficient .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Nov 16, 2016

Solution as suggested by @Yuri Lombardo :

L = lim n ( 2 n n ) n = lim n ( 2 n ) ! ( n ! ) 2 n By Stirling’s formula: n ! 2 π n ( n e ) n = lim n 4 π n ( 2 n e ) 2 n 2 π n ( n e ) 2 n n = lim n 2 2 n π n n = lim n 4 ( π n ) 1 2 n = lim n 4 exp ( ln ( π n ) 1 2 n ) exp ( x ) = e x = lim n 4 exp ( ln ( π n ) 2 n ) A / case, L’H o ˆ pital’s rule applies. = lim n 4 exp ( 1 n 2 ) Differentiate up and down w.r.t. x = 4 e 0 = 4 \begin{aligned} L & = \lim_{n \to \infty} \sqrt [n] {2n \choose n} \\ & = \lim_{n \to \infty} \sqrt[n]{\frac {(2n)!}{(n!)^2}} & \small {\color{#3D99F6}\text{By Stirling's formula: }n! \sim \sqrt{2\pi n}\left(\frac ne \right)^n} \\ & = \lim_{n \to \infty} \sqrt[n]{\frac {\sqrt{4\pi n}\left(\frac {2n}e \right)^{2n}}{2\pi n \left(\frac ne \right)^{2n}}} \\ & = \lim_{n \to \infty} \sqrt[n]{\frac {2^{2n}}{\sqrt {\pi n}}} \\ & = \lim_{n \to \infty} 4(\pi n)^{-\frac 1{2n}} \\ & = \lim_{n \to \infty} 4 \exp \left(\ln (\pi n)^{-\frac 1{2n}} \right) & \small {\color{#3D99F6} \exp(x) = e^x} \\ & = \lim_{n \to \infty} 4 \exp \left(-\frac {\ln (\pi n)}{2n} \right) & \small {\color{#3D99F6}\text{A }\infty/\infty \text{ case, L'Hôpital's rule applies.}} \\ & = \lim_{n \to \infty} 4 \exp \left(-\frac {\frac 1n}{2} \right) & \small {\color{#3D99F6}\text{Differentiate up and down w.r.t. }x} \\ & = 4e^0 = \boxed{4} \end{aligned}

Reference: L'Hôpital's rule


Alternative solution

L = lim n ( 2 n n ) n = lim n ( 2 n ) ! ( n ! ) 2 n = lim n exp ( 1 n ln ( ( 2 n ) ! ( n ! ) 2 ) ) = lim n exp ( 1 n ( k = 1 2 n ln k 2 k = 1 n ln k ) ) = lim n exp ( 1 n ( k = n + 1 2 n ln k k = 1 n ln k ) ) = lim n exp ( 1 n ( k = n + 1 2 n ( ln k ln n ) k = 1 n ( ln k ln n ) ) ) = lim n exp ( 1 n ( k = n + 1 2 n ln k n k = 1 n ln k n ) ) By Riemann sums = lim n exp ( 1 2 ln x d x 0 1 ln x d x ) = lim n exp ( [ x ln x 1 ] 1 2 [ x ln x 1 ] 0 1 ) = lim n exp ( 2 ln 2 ln 1 ln 1 + lim x 0 x ln x ) By L’H o ˆ pital’s rule = lim n exp ( 2 ln 2 0 0 + 0 ) = e ln 4 = 4 \begin{aligned} L & = \lim_{n \to \infty} \sqrt [n] {2n \choose n} \\ & = \lim_{n \to \infty} \sqrt[n]{\frac {(2n)!}{(n!)^2}} \\ & = \lim_{n \to \infty} \exp \left(\frac 1n \ln \left(\frac {(2n)!}{(n!)^2} \right) \right) \\ & = \lim_{n \to \infty} \exp \left(\frac 1n \left(\sum_{k=1}^{2n} \ln k - 2 \sum_{k=1}^{n} \ln k \right) \right) \\ & = \lim_{n \to \infty} \exp \left(\frac 1n \left(\sum_{k=n+1}^{2n} \ln k - \sum_{k=1}^{n} \ln k \right) \right) \\ & = \lim_{n \to \infty} \exp \left(\frac 1n \left(\sum_{k=n+1}^{2n} (\ln k - \ln n) - \sum_{k=1}^{n} (\ln k - \ln n) \right) \right) \\ & = \lim_{n \to \infty} \exp \left(\frac 1n \left(\sum_{k=n+1}^{2n} \ln \frac kn - \sum_{k=1}^{n} \ln \frac kn \right) \right) & \small {\color{#3D99F6}\text{By Riemann sums}} \\ & = \lim_{n \to \infty} \exp \left(\int_1^2 \ln x \ dx - \int_0^1 \ln x \ dx \right) \\ & = \lim_{n \to \infty} \exp \left(\bigg[x \ln x - 1\bigg]_1^2 - \bigg[x \ln x - 1\bigg]_0^1 \right) \\ & = \lim_{n \to \infty} \exp \left(2 \ln 2 - \ln 1 - \ln 1 + {\color{#3D99F6} \lim_{x \to 0}x\ln x} \right) & \small {\color{#3D99F6}\text{By L'Hôpital's rule}} \\ & = \lim_{n \to \infty} \exp \left(2 \ln 2 - 0 - 0 + {\color{#3D99F6}0} \right) \\ & = e^{\ln 4} = \boxed{4} \end{aligned}

Reference: Riemann sums

There's a much simpler approach. The reason why this works out is because each time we are multiplying by "close to 4".

Calvin Lin Staff - 4 years, 7 months ago

Log in to reply

@Calvin Lin sir can you please point out that simpler approach ?

Ujjwal Mani Tripathi - 4 years, 3 months ago

Log in to reply

I've added it below. It simply rigorizes the notion of "multiplying by close to 4", so you should have a think about how to do that, before reading further.

Calvin Lin Staff - 4 years, 3 months ago
Calvin Lin Staff
Feb 21, 2017

Let a n = ( 2 n n ) a_n = { 2n \choose n} .
We have the recurrence relation a n = 2 n × ( 2 n 1 ) n × n × a n 1 = ( 4 2 n ) × a n a_n = \frac{ 2n \times (2n-1) } { n \times n} \times a_{n-1} = (4 - \frac{2}{n} ) \times a_n . Because each time we are "multiplying by close to 4", it makes sense that the final limit will be 4. Let's rigorize this idea.

Let b n = log a n b_n = \log a_n . The expression in the problem is equivalent to

lim n ( 2 n n ) n = e lim 1 n b n . \lim_{n\rightarrow \infty} \sqrt[n]{ { 2n \choose n } } = e ^ { \lim \frac{1}{n} b_n } .

From the recurrence relation, b n = ln ( 4 2 n ) + b n 1 b_n = \ln \left( 4 - \frac{ 2}{n} \right) + b_{n-1} .
Recall that (you should know / be able to prove that) if lim c n = C \lim c_n = C , then lim 1 n i = 1 n c i = C \lim \frac{1}{n} \sum_{i=1}^n c_i = C .
Hence, since lim ln ( 4 2 n ) = ln 4 \lim \ln \left ( 4 - \frac{2}{n} \right) = \ln 4 , it follows that lim 1 n b n = ln 4 \lim \frac{1}{n} b_n = \ln 4 .

Thus, the limit in the question is equal to e ln 4 = 4 e ^ { \ln 4 } = 4 .

Yuri Lombardo
Nov 15, 2016

Hint: use Stirling's approximation for factorials.

for n + n \rightarrow + \infty

n ! = 2 π n ( n e ) n n! = \sqrt{2\pi n}(\frac{n}{e})^{n}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...