How'd you do this one?

Geometry Level 3

Given that c o s ( A B ) + c o s ( B C ) + c o s ( C A ) = 3 / 2 cos(A-B) + cos(B-C) +cos(C-A) = -3/2 ,
find the value of c o s ( A ) + c o s ( B ) + c o s ( C ) cos(A) + cos(B) + cos(C) .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Yash Jipkate
Oct 20, 2014

Well its all about trigonometric identities cos(A-B) = cosAcosB + sinAsinB

therefore cos(A-B) + cos(B-C) + cos(C-A) = -3/2

cosAcosB + sinAsinB + cosBcosC + sinBsinC + cosCcosA + sinCsinA = -3/2

2(cosAcosB + sinAsinB + cosBcosC + sinBsinC + cosCcosA + sinCsinA) + 3 =0

2(cosAcosB + sinAsinB + cosBcosC + sinBsinC + cosCcosA + sinCsinA) + 1 +1+1 =0

2(cosAcosB + sinAsinB + cosBcosC + sinBsinC + cosCcosA + sinCsinA) + sin^{2}A + cos^{A} + sin^{B} +cos^{B} + sin^{C} + cos^{C} = 0

2cosAcosB + 2sinAsinB +2 cosBcosC + 2sinBsinC +2 cosCcosA + 2sinCsinA + sin^{2}A + cos^{A} + sin^{B} +cos^{B} + sin^{C} + cos^{C} = 0

[sin^{2}A +sin^{B} + sin^{C}+ 2sinAsinB + 2sinBsinC+ 2sinCsinA] + [cos^{2}A +cos^{B}+ cos^{C}+2cosAcosB +2 cosBcosC+2 cosCcosA] = 0

(sinA + sinB + sinC)^{2} + (cosA + cosB + cosC)^{2} = 0

Now since any number's square is always positive and sum of two can be zero only when both are zero.

cosA+ cosB + cosC = 0

Wow, that's an amazing series of equations.

Calvin Lin Staff - 6 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...