This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Well its all about trigonometric identities cos(A-B) = cosAcosB + sinAsinB
therefore cos(A-B) + cos(B-C) + cos(C-A) = -3/2
cosAcosB + sinAsinB + cosBcosC + sinBsinC + cosCcosA + sinCsinA = -3/2
2(cosAcosB + sinAsinB + cosBcosC + sinBsinC + cosCcosA + sinCsinA) + 3 =0
2(cosAcosB + sinAsinB + cosBcosC + sinBsinC + cosCcosA + sinCsinA) + 1 +1+1 =0
2(cosAcosB + sinAsinB + cosBcosC + sinBsinC + cosCcosA + sinCsinA) + sin^{2}A + cos^{A} + sin^{B} +cos^{B} + sin^{C} + cos^{C} = 0
2cosAcosB + 2sinAsinB +2 cosBcosC + 2sinBsinC +2 cosCcosA + 2sinCsinA + sin^{2}A + cos^{A} + sin^{B} +cos^{B} + sin^{C} + cos^{C} = 0
[sin^{2}A +sin^{B} + sin^{C}+ 2sinAsinB + 2sinBsinC+ 2sinCsinA] + [cos^{2}A +cos^{B}+ cos^{C}+2cosAcosB +2 cosBcosC+2 cosCcosA] = 0
(sinA + sinB + sinC)^{2} + (cosA + cosB + cosC)^{2} = 0
Now since any number's square is always positive and sum of two can be zero only when both are zero.
cosA+ cosB + cosC = 0