How's this related to trig?

Calculus Level 5

7 5 = x + x 2 2 ! x 3 3 ! x 4 4 ! + x 5 5 ! + x 6 6 ! x 7 7 ! x 8 8 ! + . . . \large \dfrac{7}{5} = x + \dfrac{x^2}{2!} - \dfrac{x^3}{3!} - \dfrac{x^4}{4!} + \dfrac{x^5 }{5!} + \dfrac{x^6}{6!} - \dfrac{x^7}{7!} - \dfrac{x^8}{8!} + ...

If the value of x x that satisfies the above equation can be expressed in the form 2 arctan ( a + b c ) + 2 π k 2 \arctan \left( \dfrac{-a + \sqrt{b}}{c}\right) + 2\pi k for integer k k , where a a and c c are positive coprime integers and b b is square-free, find a + b + c a + b + c .


The answer is 54.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Michael Mendrin
May 7, 2016

This expression can be restated in terms of series expansions of familiar trigonometric functions

7 5 = 1 + S i n ( x ) C o s ( x ) \dfrac { 7 }{ 5 } =1+Sin\left( x \right) -Cos\left( x \right)

If we let

x = 2 A r c T a n ( y ) + 2 π k x=2ArcTan\left(y\right)+2\pi k

then we have though substitutions

7 5 = 1 + 2 y y 2 + 1 y 2 + 1 y 2 + 1 \dfrac { 7 }{ 5 } =1+\dfrac { 2y }{ { y }^{ 2 }+1 } -\dfrac { -{ y }^{ 2 }+1 }{ { y }^{ 2 }+1 }

Solving for y y gets us

y = 5 ± 46 3 y=\dfrac { -5\pm \sqrt { 46 } }{ 3 }

and we have our answer 54 54

Hi can you explain how you substituted x=2tan^-1(y) +2pik into sin(x) and cos(x) to get 2y/(y^2 +1) and (-y^2+1)/(y^2+1)

Ashish Sacheti - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...