Huge but small polynomial!

Algebra Level 4

x 2016 1 = 0 x^{2016}-1=0 If the roots of the above equation are 1 , α 1 , α 2 , α 3 , , α 2015 , 1,\alpha _{1},\alpha _{2},\alpha _{3},\ldots, \alpha _{2015}, find the value of ( 1 α 1 ) ( 1 α 2 ) ( 1 α 3 ) ( 1 α 2015 ) . (1-\alpha _{1} )(1-\alpha _{2} )(1-\alpha _{3} )\cdots (1-\alpha _{2015} ).


The answer is 2016.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

x 2016 1 = ( x 1 ) ( x α 1 ) ( x α 2 ) . . . . . . ( x α 2015 ) = ( x 1 ) ( x 2015 + x 2014 + x 2013 + . . . + x + 1 ) x^{2016} - 1 = (x - 1)(x - \alpha_1)(x - \alpha_2)......(x - \alpha_{2015}) = (x - 1)(x^{2015} + x^{2014} + x^{2013} + ... + x + 1) \Rightarrow ( x α 1 ) ( x α 2 ) . . . . . . ( x α 2015 ) = ( x 2015 + x 2014 + x 2013 + . . . + x + 1 ) (x - \alpha_1)(x - \alpha_2)......(x - \alpha_{2015}) = (x^{2015} + x^{2014} + x^{2013} + ... + x + 1) \Rightarrow ( 1 α 1 ) ( 1 α 2 ) . . . . . . ( 1 α 2015 ) = ( 1 2015 + 1 2014 + 1 2013 + . . . + 1 1 + 1 ) = 2016 (1 - \alpha_1)(1 - \alpha_2)......(1 - \alpha_{2015}) = (1^{2015} + 1^{2014} + 1^{2013} + ... + 1^1 + 1) = 2016

Efren Medallo
Aug 17, 2016

Assuming that ( 1 α 1 ) (1-\alpha_1) is just a factor once, then we can simplify the polynomial in question as

x 2016 1 x 1 \frac{x^{2016} - 1}{x-1} .

which we cannot substitute x = 1 x=1 yet because it gives us an indeterminate form.

By L'Hopital's rule, we get the derivative of both numerator and denominator and get

2016 x 2015 1 \frac{ 2016x^{2015}}{1}

So we can now substitute x and get 2016.

(x-1)(x-a1)(x-a2)..(x-a2015)=x^2016-1 Differentiate both sides and put x=1 That will give you (1-a1)(1-a2)...(1-a2015)=2016

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...