Huge power

Find the last 2 digits of the number 560 3 1243 5603^{1243} .


The answer is 27.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

560 3 1243 3 1243 ( m o d 100 ) 3 λ ( 100 ) = 3 20 1 ( m o d 100 ) 1243 ( m o d 20 ) 1243 3 ( m o d 20 ) 560 3 1243 3 1243 3 3 27 ( m o d 100 ) 5603^{1243}\equiv 3^{1243} \pmod {100}\\ 3^{\lambda (100)}=3^{20}\equiv 1\pmod{100}\\ \implies\boxed{1243 \pmod {20}}\\ 1243\equiv 3\pmod {20}\\ \implies 5603^{1243}\equiv 3^{1243}\equiv 3^3\equiv \boxed{27}\pmod{100}

What is the λ function you used?

Jacob Swenberg - 5 years, 1 month ago

Log in to reply

That is the chaermical lambda function

Alex Spagnoletti - 5 years, 1 month ago

Lambda of 100 is 10 not 20

Alex Spagnoletti - 5 years, 1 month ago

Log in to reply

No, λ ( 100 ) = 20 \lambda(100)=20 . Here we can use ϕ ( 100 ) = 40 \phi(100)=40 as well, for those who are not familiar with the Carmichael lambda.

Otto Bretscher - 5 years, 1 month ago

Log in to reply

Yes, I dis a mistake sorry. Anyway sometimes the o r d m ( a ) ord_m(a) is something less than phi or lambda. How could we compute this?

Alex Spagnoletti - 5 years, 1 month ago

Yes, I know phi 100 and not lambda 100 yet can you explain what is Carmichael lambda...please

Syed Hamza Khalid - 2 years, 9 months ago
Chew-Seong Cheong
May 14, 2016

560 3 1243 ( 5600 + 3 ) 1243 (mod 100) Since 5600 0 (mod 100) 3 1243 (mod 100 ) As 3 and 100 are coprimes, we can use Euler totient theorem. 3 1243 mod ϕ ( 100 ) (mod 100) where ϕ ( ) is the totient function. 3 1243 mod 40 (mod 100) 3 3 (mod 100) 27 (mod 100) \begin{aligned} 5603^{1243} & \equiv (\color{#3D99F6}{5600} + 3)^{1243} \text{ (mod 100)} \quad \quad \small \color{#3D99F6}{\text{Since }5600 \equiv 0 \text{ (mod 100)}} \\ & \equiv \color{#3D99F6}{3}^{1243} \text{ (mod } \color{#3D99F6}{100}) \quad \quad \quad \quad \quad \quad \small \color{#3D99F6}{\text{As 3 and 100 are coprimes, we can use Euler totient theorem.}} \\ & \equiv 3^{1243 \text{ mod } \color{#3D99F6}{\phi(100)}} \text{ (mod 100)} \quad \quad \ \small \color{#3D99F6}{\text{where }\phi (\cdot) \text{ is the totient function.}} \\ & \equiv 3^{1243 \text{ mod } \color{#3D99F6}{40}} \text{ (mod 100)} \\ & \equiv 3^3 \text{ (mod 100)} \\ & \equiv \boxed{27} \text{ (mod 100)} \end{aligned}

Parth Sankhe
Oct 21, 2018

The last 2 digits are 03, 3 4 k 3^{4k} has unit digit as 1, thus 3 1243 3^{1243} would have it as 7. Since its followed by a zero, I figured the last 2 digits would just be 0 3 3 = 27 03^3=27 .

P.S- Please let me know if this method is right or wrong.

Syed Hamza Khalid
Aug 25, 2018

To simplify, I will first find the value of x x in the following:

560 3 x 1 ( m o d 100 ) \large 5603^x \equiv 1 \pmod {100}

Using Euler's totient theorem:

Since gcd (100, 5603) = 1, x = ϕ ( 100 ) = 100 ( 1 1 2 ) ( 1 1 5 ) = 40 \large \text{Since gcd (100, 5603) = 1, } x = \phi (100) = 100 (1 - \dfrac{1}{2}) (1 - \dfrac{1}{5} ) = 40

Then using basic modulo arithmetic we can find the answer:

560 3 40 1 ( m o d 100 ) 560 3 1240 1 ( m o d 100 ) . . . . . . . . . . . . . . . . . Multiply both sides by 31 560 3 1240 × 560 3 3 1 × 3 3 ( m o d 100 ) . . . . . . . . . . . . . . . . . Note that 5603 3 ( m o d 100 ) 560 3 123 27 ( m o d 100 ) . . . . . . . . . . . . . . . . . So 27 is the answer \large 5603^{40} \equiv 1 \pmod {100} \\ \large \therefore 5603^{1240} \equiv 1 \pmod {100} .................\color{#3D99F6} \text{ Multiply both sides by }31 \\ \large 5603^{1240} \times 5603^3 \equiv 1 \times 3^3 \pmod {100} ................. \color{#3D99F6} \text{ Note that } 5603 \equiv 3 \pmod{100} \\ \large \implies 5603^{123} \equiv 27 \pmod {100} .................\color{#3D99F6} \text{ So 27 is the answer}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...