AM-HM

Algebra Level 4

D C A B

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tom Engelsman
Dec 1, 2016

If the ratio of AM-to-HM for two positive numbers a a and b b is m n \frac{m}{n} , then we can write:

a + b 2 ÷ 2 a 1 + b 1 = a + b 2 ÷ 2 a b a + b = a + b 2 a + b 2 a b = ( a + b ) 2 4 a b = m n . \frac{a + b}{2} \div \frac{2}{a^-1 + b^-1} = \frac{a + b}{2} \div \frac{2ab}{a + b} = \frac{a + b}{2} \cdot \frac{a + b}{2ab} = \frac{(a + b)^2}{4ab} = \frac{m}{n}.

After expanding and simplifying, we now obtain:

( a + b ) 2 4 a b = m n a 2 + 2 a b + b 2 4 a b = m n a b + b a + 2 = 4 m n = a b + b a = 4 m n 2 \frac{(a + b)^2}{4ab} = \frac{m}{n} \Rightarrow \frac{a^2 + 2ab + b^2}{4ab} = \frac{m}{n} \Rightarrow \frac{a}{b} + \frac{b}{a} + 2 = 4*\frac{m}{n} = \frac{a}{b} + \frac{b}{a} = 4*\frac{m}{n} - 2

and if we substitute u = a b u = \frac{a}{b} , we now get u + 1 u = 4 m n 2 u 2 ( 4 m n 2 ) u + 1 = 0 u + \frac{1}{u} = \frac{4m}{n} - 2 \Rightarrow u^2 - (\frac{4m}{n} - 2)u + 1 = 0 .

Using the Quadratic Formula (and keeping in mind u > 0 u > 0 for m , n > 0 m,n > 0 ), we next find:

u = ( 4 m n 2 ) + ( 4 m n 2 ) 2 4 ( 1 ) ( 1 ) 2 = ( 4 m n 2 ) + ( 16 m 2 n 2 16 m n + 4 4 2 = 4 m 2 n n + ( 16 m 2 16 m n n 2 ) 2 = ( 4 m 2 n ) + 4 ( m 2 m n ) 2 n = ( 2 m n ) + 2 ( m 2 m n ) n u = \frac{(4 \cdot \frac{m}{n} -2) + \sqrt{( 4 \cdot \frac{m}{n} -2)^2 - 4(1)(1)}}{2} = \frac{(4 \cdot \frac{m}{n} -2) + \sqrt{( 16 \cdot \frac{m^2}{n^2} - 16 \cdot \frac{m}{n} + 4 - 4}}{2} = \frac{ \frac{4m - 2n}{n} + \sqrt{(\frac{16m^2 - 16mn}{n^2})}}{2} = \frac{(4m - 2n) + 4 \cdot \sqrt{(m^2 - mn)}}{2n} = \frac{(2m - n) + 2 \cdot \sqrt{(m^2 - mn)}}{n} .

Now taking note that the numerator equals: ( 2 m n ) + 2 m 2 m n = m + ( m n ) + 2 m ( m n ) = ( m ) 2 + 2 m m n + ( m n ) 2 = ( m + m n ) 2 (2m - n) + 2\sqrt{m^2 - mn} = m + (m-n) + 2\sqrt{m(m-n)} = (\sqrt{m})^2 + 2 \cdot \sqrt{m} \cdot \sqrt{m-n} + (\sqrt{m-n})^2 = (\sqrt{m} + \sqrt{m-n})^2

and the denominator equals: n = m ( m n ) = ( m ) 2 ( m n ) 2 = ( m m n ) ( m + m n ) n = m - (m-n) = (\sqrt{m})^2 - (\sqrt{m-n})^2 = (\sqrt{m} - \sqrt{m-n})(\sqrt{m} + \sqrt{m-n})

we now ultimately obtain: u = a b = ( m + m n ) 2 ( m m n ) ( m + m n ) = m + m n m m n u = \frac{a}{b} = \frac{(\sqrt{m} + \sqrt{m-n})^2}{(\sqrt{m} - \sqrt{m-n})(\sqrt{m} + \sqrt{m-n})} = \boxed{\frac{\sqrt{m} + \sqrt{m-n}}{\sqrt{m} - \sqrt{m-n}}} .

Karan Shekhawat
Apr 6, 2015

NCERT problem

can you post the solution please @Karan Shekhawat

Mardokay Mosazghi - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...