An algebra problem by ابراهيم فقرا

Algebra Level 3

a + b + 2 c = 6 2 a 2 + 2 b 2 + c 2 = 4 2 a 3 + 2 b 3 + c 3 = 0 a 4 + b 4 + 2 c 4 = k \large \begin{array} {rcrcrcr} a\ & + & b\ & + &{\color{#D61F06}2}c\ & = & 6 \\ {\color{#D61F06}2}a^2 & + & {\color{#D61F06}2}b^2 & + & c^2 & = & 4 \\ {\color{#D61F06}2}a^3 & + & {\color{#D61F06}2}b^3& + & c^3 &= & 0 \\ a^4 & + & b^4 & + & {\color{#D61F06}2}c^4 & = & k \end{array}

k R k \in \mathbb{R}

If a a , b b , c c , and k k , satisfy the system of equations above, find the value of k k .


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Dec 26, 2018

We note that ( a + b ) ( a 2 + b 2 ) = a 3 + b 3 + a b ( a + b ) ( 6 2 c ) ( 2 1 2 c 2 ) = 1 2 c 3 + 1 2 ( 6 2 c ) [ ( 6 2 c ) 2 2 + 1 2 c 2 ] \begin{aligned} (a + b)(a^2 + b^2) & = \; a^3 + b^3 + ab(a + b) \\ (6 - 2c)(2 - \tfrac12c^2) & = \; -\tfrac12c^3 + \tfrac12(6 - 2c)\big[(6 - 2c)^2 - 2 + \tfrac12c^2\big] \end{aligned} This is a cubic equation for c c with roots 2 2 , 1 8 ( 19 ± i 119 ) \tfrac{1}{8}\big(19 \pm i\sqrt{119}) . If c = 2 c=2 we find that a , b = 1 ± i a,b = 1 \pm i , and k = 24 k=\boxed{24} . The other two values of c c yield complex values for k k , so can be ignored.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...