Humongous power in the denominator!

Calculus Level 4

Evaluate:

0 1 ( x 3 + 1 ) 5 d x \int_0^{\infty} \frac{1}{(x^3+1)^5}\,dx


The answer is 0.5473742937332344.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Jatin Yadav
May 21, 2014

Use reduction formula.

Let I m , n = 0 ( x m + 1 ) n d x I_{m,n} = \displaystyle \int_{0}^{\infty} (x^m+1)^{-n} dx

Use, By parts, taking d x dx as second function to get:

I m , n = 0 m n x m ( x m + 1 ) ( n + 1 ) d x I_{m,n} = \displaystyle \int_{0}^{\infty} \text{ m n }x^m (x^m +1)^{-(n+1)} dx

I m , n = 0 m n ( 1 + x m 1 ) ( x m + 1 ) ( n + 1 ) d x \Rightarrow I_{m,n} = \displaystyle \int_{0}^{\infty} \text{ m n } (1+x^m-1) (x^m+1)^{-(n+1)} dx

I m , n = m n I m , n m n I m , n + 1 \Rightarrow I_{m,n} = \text{ m n } I_{m,n} - \text{ m n } I_{m,n+1}

I m , n + 1 = m n-1 m n I m , n \Rightarrow \boxed{I_{m,n+1} = \dfrac{\text{ m n-1 }}{\text{ m n }} I_{m,n}}

Hence, we get I 3 , 5 = 11 12 × 8 9 × 5 6 × 2 3 × I 3 , 1 I_{3,5} = \dfrac{11}{12} \times \dfrac{8}{9} \times \dfrac{5}{6} \times \dfrac{2}{3} \times I_{3,1}

I 3 , 5 = 110 243 0 d x x 3 + 1 = 0.5474 \Rightarrow I_{3,5} = \dfrac{110}{243} \displaystyle \int_{0}^{\infty} \dfrac{dx}{x^3+1} = 0.5474

Note: You can find indefinite integral for d x x 3 + 1 \int \frac{dx}{x^3+1} and put limits 0 to infity. I leave it on you.

That's way better than my intended solution, great job Jatin! :)

My solution uses differentiation under the integral symbol.

Consider the following:

0 d x a 3 + x 3 = 2 π 3 3 a 2 \displaystyle \int_0^{\infty} \frac{dx}{a^3+x^3}=\frac{2\pi}{3\sqrt{3}a^2}

Differentiate four times to obtain the answer.

Pranav Arora - 7 years ago

Log in to reply

Could you add your solution? I like the "differentiate under the integral" method, which isn't often used.

Calvin Lin Staff - 7 years ago

Log in to reply

Done! :) \qquad{}

Pranav Arora - 7 years ago
Pranav Arora
May 22, 2014

Consider the integral:

0 d x a 3 + x 3 \displaystyle \int_0^{\infty} \frac{dx}{a^3+x^3}

To evaluate the above, one can use partial fraction decomposition, however, I present a different approach. Use the substitution x 3 = a 3 t x^3=a^3t to obtain:

0 d x a 3 + x 3 = 1 3 a 2 0 t 2 / 3 1 + t d t = 2 π 3 3 a 2 \displaystyle \int_0^{\infty} \frac{dx}{a^3+x^3}=\frac{1}{3a^2}\int_0^{\infty} \frac{t^{-2/3}}{1+t}\,dt=\frac{2\pi}{3\sqrt{3}a^2}

where I used the result I proved in the following problem: Twelve? Ain't Nobody got time for that! Part 2

Differentiate wrt a a four times to get:

(I show each of the derivatives)

0 3 a 2 ( a 3 + x 3 ) 2 d x = 4 π 3 3 a 3 0 d x ( a 3 + x 3 ) 2 = 4 π 9 3 a 5 \displaystyle \int_0^{\infty} \frac{3a^2}{(a^3+x^3)^2}\,dx=\frac{4\pi}{3\sqrt{3}a^3} \Rightarrow \int_0^{\infty}\frac{dx}{(a^3+x^3)^2}= \frac{4\pi}{9\sqrt{3}a^5}

0 6 a 2 ( a 3 + x 3 ) 3 d x = 20 π 9 3 a 6 0 d x ( a 3 + x 3 ) 3 = 10 π 27 3 a 8 \displaystyle \Rightarrow \int_0^{\infty}\frac{6a^2}{(a^3+x^3)^3}\,dx =\frac{20\pi}{9\sqrt{3}a^6} \Rightarrow \int_0^{\infty} \frac{dx}{(a^3+x^3)^3}=\frac{10\pi}{27\sqrt{3}a^8}

0 9 a 2 ( a 3 + x 3 ) 4 d x = 80 π 27 3 a 9 0 d x ( a 3 + x 3 ) 4 d x = 80 π 243 3 a 11 \displaystyle \Rightarrow \int_0^{\infty}\frac{9a^2}{(a^3+x^3)^4}\,dx=\frac{80\pi}{27\sqrt{3}a^9} \Rightarrow \int_0^{\infty}\frac{dx}{(a^3+x^3)^4}\,dx =\frac{80\pi}{243\sqrt{3}a^{11}}

Finally differentiating once more,

0 12 a 2 ( a 3 + x 3 ) 5 = 880 π 243 3 a 12 0 d x ( a 3 + x 3 ) 5 = 220 π 729 3 a 14 \displaystyle \Rightarrow \int_0^{\infty} \frac{12a^2}{(a^3+x^3)^5}=\frac{880\pi}{243\sqrt{3}a^{12}} \Rightarrow \int_0^{\infty} \frac{dx}{(a^3+x^3)^5}=\frac{220\pi}{729\sqrt{3}a^{14}}

Substituting a = 1 a=1 , hence, the final answer is:

0 d x ( 1 + x 3 ) 5 = 220 π 729 3 \int_0^{\infty} \frac{dx}{(1+x^3)^5}=\boxed{\dfrac{220\pi}{729\sqrt{3}}}

@Pranav Arora , I did it the same way & ended up with that final expression, wolfram alphaed it & BAM! You Solved It! :D

Ameya Salankar - 7 years ago
Patrick Corn
Jul 14, 2014

So I used a contour integral around the path from 0 to \infty , then around 120 120 degrees, then back down to the origin. If I I is the integral, this gives ( 1 ω ) I = 2 π i R e s w 2 1 ( z 3 + 1 ) 5 (1-\omega)I = 2\pi i \, {\rm Res}_{-w^2} \frac1{(z^3+1)^5} where ω = e x p ( 2 π i / 3 ) \omega = {\rm exp}(2\pi i/3) .

Computing the residue involves taking four derivatives of 1 ( z + 1 ) 5 ( z + ω ) 5 \frac1{(z+1)^5(z+\omega)^5} and evaluating at ω 2 -\omega^2 , so I'll cop to using some computer assistance there. At any rate, I got a residue of 110 ω 2 729 \frac{110 \omega^2}{729} , which led to the same answer as everyone else: 220 π 3 2187 \frac{220\pi\sqrt{3}}{2187} .

I used contour integration too- but like the differentiation under the integral!

David Vaccaro - 6 years, 10 months ago

Substitute x = t 1 3 x=t^{\frac{1}{3}} to get the answer as 1 3 B ( 1 3 , 14 3 ) \frac{1}{3}\Beta(\frac{1}{3},\frac{14}{3})

We used the definition of beta function as B ( m , n ) = 0 x n 1 ( 1 + x ) m + n d x \large \Beta(m,n) = \int_{0}^{\infty} \frac{x^{n-1}}{(1+x)^{m+n}} dx

Now using the following properties :-

B ( m , n ) = Γ ( n ) Γ ( m ) Γ ( m + n ) \Beta(m,n) = \frac{\Gamma(n)\Gamma(m)}{\Gamma(m+n)}

Γ ( n + 1 ) = n Γ ( n ) \Gamma(n+1) = n\Gamma(n)

Γ ( n ) Γ ( 1 n ) = π sin ( π n ) \Gamma(n)\Gamma(1-n) = \frac{\pi}{\sin(\frac{\pi}{n})}

We have our answer as

11 8 5 2 3 3 3 3 3 Γ ( 1 3 ) Γ ( 2 3 ) Γ ( 5 ) \large\frac{11\cdot8\cdot5\cdot2}{3\cdot3\cdot3\cdot3\cdot3}\frac{\Gamma(\frac{1}{3})\Gamma(\frac{2}{3})}{\Gamma(5)}

Evaluating this we get 660 π 3 7 3 \large \frac{660\pi}{3^{7}\sqrt{3}} as our answer.

Aaghaz Mahajan
May 26, 2018

Well, @Pranav Arora We can also do this using Beta Function.......... Simply substitute x raised to the power 1.5 as Tan(t) and then solve it........!!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...