Hyper-intriguing Ornament III

Geometry Level 2

Consider a hyper-ball i = 1 n x i 2 25 \sum_{i=1}^{n}{x_i}^2 \leq 25 and a concentric hyper-cube [ 4 , 4 ] n \left[-4,4 \right]^n . What (volume) percentage of the hyper-ball resides within the hyper-cube, as n n \rightarrow \infty ? Round your answer to the nearest integer.


The answer is 100.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

The limit is easy to understand. The fraction of a n-dimensional hyperball of radius 1 that is in the n-dimensional hyperball of radius 1 2 \frac12 is 2 n 2^{-n} , because the exponent on r r is n n ..

Let us engage the piledriver . Using the radius ratio in this problem, 4 5 \frac45 , the fraction of the volume in hyper-spherical end cap, which number 2 n 2 n , is:

Using the odd dimensioned hyper-spherical cap formulae, which are fast to compute, the progression towards a limit is easy to see: \begin{array}{rl} 1 & 0.2 \\ 3 & 0.168 \\ 5 & 0.0856 \\ 7 & 0.038192 \\ 9 & 0.0160366 \\ 11 & 0.00650553 \\ 13 & 0.00258142 \\ 15 & 0.00100875 \\ 17 & 0.000389791 \\ 19 & 0.000149336 \\ 21 & 0.0000568287 \\ 23 & 0.0000215085 \\ 25 & \text{8.104170800930324\$\grave{ }\$*\${}^{\wedge}\$-6} \\ 27 & \text{3.042127642435132\$\grave{ }\$*\${}^{\wedge}\$-6} \\ 29 & \text{1.1383156440627037\$\grave{ }\$*\${}^{\wedge}\$-6} \\ 31 & \text{4.24774590586685\$\grave{ }\$*\${}^{\wedge}\$-7} \\ 33 & \text{1.5813248106526474\$\grave{ }\$*\${}^{\wedge}\$-7} \\ 35 & \text{5.874593794653908\$\grave{ }\$*\${}^{\wedge}\$-8} \\ 37 & \text{2.1783826641858435\$\grave{ }\$*\${}^{\wedge}\$-8} \\ 39 & \text{8.06451316612106\$\grave{ }\$*\${}^{\wedge}\$-9} \\ 41 & \text{2.9811522426293965\$\grave{ }\$*\${}^{\wedge}\$-9} \\ 43 & \text{1.1005645447878985\$\grave{ }\$*\${}^{\wedge}\$-9} \\ 45 & \text{4.0581363685967064\$\grave{ }\$*\${}^{\wedge}\$-10} \\ 47 & \text{1.4947362318550126\$\grave{ }\$*\${}^{\wedge}\$-10} \\ 49 & \text{5.5000958468224146\$\grave{ }\$*\${}^{\wedge}\$-11} \\ 51 & \text{2.021992819485542\$\grave{ }\$*\${}^{\wedge}\$-11} \\ 53 & \text{7.427184687963443\$\grave{ }\$*\${}^{\wedge}\$-12} \\ 55 & \text{2.7260391235233023\$\grave{ }\$*\${}^{\wedge}\$-12} \\ 57 & \text{9.998344194441533\$\grave{ }\$*\${}^{\wedge}\$-13} \\ 59 & \text{3.6646664950255834\$\grave{ }\$*\${}^{\wedge}\$-13} \\ 61 & \text{1.342366651319315\$\grave{ }\$*\${}^{\wedge}\$-13} \\ 63 & \text{4.914237412703877\$\grave{ }\$*\${}^{\wedge}\$-14} \\ 65 & \text{1.798065981670408\$\grave{ }\$*\${}^{\wedge}\$-14} \\ 67 & \text{6.575584114225488\$\grave{ }\$*\${}^{\wedge}\$-15} \\ 69 & \text{2.4035637798312907\$\grave{ }\$*\${}^{\wedge}\$-15} \\ 71 & \text{8.781764054282071\$\grave{ }\$*\${}^{\wedge}\$-16} \\ 73 & \text{3.207183691988818\$\grave{ }\$*\${}^{\wedge}\$-16} \\ 75 & \text{1.170825279751455\$\grave{ }\$*\${}^{\wedge}\$-16} \\ 77 & \text{4.272636367879485\$\grave{ }\$*\${}^{\wedge}\$-17} \\ 79 & \text{1.55863354894657\$\grave{ }\$*\${}^{\wedge}\$-17} \\ 81 & \text{5.683872750992984\$\grave{ }\$*\${}^{\wedge}\$-18} \\ 83 & \text{2.0720694479380085\$\grave{ }\$*\${}^{\wedge}\$-18} \\ 85 & \text{7.551457047552192\$\grave{ }\$*\${}^{\wedge}\$-19} \\ 87 & \text{2.7512500232889627\$\grave{ }\$*\${}^{\wedge}\$-19} \\ 89 & \text{1.0020932495292006\$\grave{ }\$*\${}^{\wedge}\$-19} \\ 91 & \text{3.648971790899017\$\grave{ }\$*\${}^{\wedge}\$-20} \\ 93 & \text{1.3283799660362259\$\grave{ }\$*\${}^{\wedge}\$-20} \\ 95 & \text{4.8346872349364785\$\grave{ }\$*\${}^{\wedge}\$-21} \\ 97 & \text{1.7591918852300544\$\grave{ }\$*\${}^{\wedge}\$-21} \\ 99 & \text{6.399720825247548\$\grave{ }\$*\${}^{\wedge}\$-22} \\ \end{array}

For the record, the first 9 hyper-spherical cap formulae are: 1 h 2 tan 1 ( h r h ( h 2 r ) ) r 2 + π r 2 2 + ( h r ) h ( h 2 r ) 3 1 3 h 2 π ( h 3 r ) 4 1 12 π ( 6 tan 1 ( h r h ( h 2 r ) ) r 4 + 3 π r 4 2 ( h ( h 2 r ) r ( h + 3 r ) 6 h 5 ( h 2 r ) ) r 4 h 7 ( h 2 r ) ) 5 1 30 h 3 π 2 ( 3 h 2 15 r h + 20 r 2 ) 6 1 180 π 2 ( 30 tan 1 ( h r h ( h 2 r ) ) r 6 + 15 π r 6 + 2 ( h r ) ( 8 h 4 32 r h 3 + 22 r 2 h 2 + 20 r 3 h + 15 r 4 ) h ( h 2 r ) ) 7 1 210 h 4 π 3 ( 5 h 3 + 35 r h 2 84 r 2 h + 70 r 3 ) 8 π 3 ( 210 tan 1 ( h r h ( h 2 r ) ) r 8 + 105 π r 8 2 h ( h 2 r ) ( 48 h 7 336 r h 6 + 808 r 2 h 5 680 r 3 h 4 + 6 r 4 h 3 + 14 r 5 h 2 + 35 r 6 h + 105 r 7 ) ) 5040 9 h 5 π 4 ( 35 h 4 315 r h 3 + 1080 r 2 h 2 1680 r 3 h + 1008 r 4 ) 7560 \begin{array}{rl} 1 & h \\ 2 & \tan ^{-1}\left(\frac{h-r}{\sqrt{-h (h-2 r)}}\right) r^2+\frac{\pi r^2}{2}+(h-r) \sqrt{-h (h-2 r)} \\ 3 & -\frac{1}{3} h^2 \pi (h-3 r) \\ 4 & \frac{1}{12} \pi \left(6 \tan ^{-1}\left(\frac{h-r}{\sqrt{-h (h-2 r)}}\right) r^4+3 \pi r^4-2 \left(\sqrt{-h (h-2 r)} r (h+3 r)-6 \sqrt{-h^5 (h-2 r)}\right) r-4 \sqrt{-h^7 (h-2 r)}\right) \\ 5 & \frac{1}{30} h^3 \pi ^2 \left(3 h^2-15 r h+20 r^2\right) \\ 6 & \frac{1}{180} \pi ^2 \left(30 \tan ^{-1}\left(\frac{h-r}{\sqrt{-h (h-2 r)}}\right) r^6+15 \pi r^6+2 (h-r) \left(8 h^4-32 r h^3+22 r^2 h^2+20 r^3 h+15 r^4\right) \sqrt{-h (h-2 r)}\right) \\ 7 & \frac{1}{210} h^4 \pi ^3 \left(-5 h^3+35 r h^2-84 r^2 h+70 r^3\right) \\ 8 & \frac{\pi ^3 \left(210 \tan ^{-1}\left(\frac{h-r}{\sqrt{-h (h-2 r)}}\right) r^8+105 \pi r^8-2 \sqrt{-h (h-2 r)} \left(48 h^7-336 r h^6+808 r^2 h^5-680 r^3 h^4+6 r^4 h^3+14 r^5 h^2+35 r^6 h+105 r^7\right)\right)}{5040} \\ 9 & \frac{h^5 \pi ^4 \left(35 h^4-315 r h^3+1080 r^2 h^2-1680 r^3 h+1008 r^4\right)}{7560} \\ \end{array}

Otto Bretscher
Dec 30, 2018

Another charming problem on a Sunday morning, Comrade! Thank you!

Let me try to explain this in the simplest terms I can think of, without resorting to fancy formulas. In what follows, let b b be the volume of the unit ball in R n 1 \mathbb{R}^{n-1} . For example, for n = 3 n=3 , we have b = π b=\pi , the area of the unit disk in R 2 \mathbb{R}^2 .

We can inscribe a cylinder of volume 6 × 4 n 1 b 6\times 4^{n-1}b into our hyperball by letting x 1 2 + . . . + x n 1 2 16 x_1^2+...+x_{n-1}^2\leq 16 and x n 3 |x_n| \leq 3 . Likewise we can inscribe each of the 2 n 2n caps (for example, x n 4 ) x_n\geq 4) into a cylinder of volume 3 n 1 b 3^{n-1}b since x 1 2 + . . . + x n 1 2 9 x_1^2+...+x_{n-1}^2\leq 9 . Thus V c a p s V t o t a l 2 n × 3 n 1 6 × 4 n 1 \frac{V_{caps}}{V_{total}} \leq \frac{2n\times 3^{n-1}}{6\times 4^{n-1}} , approaching 0 as n n \rightarrow \infty . Thus the percentage of the volume of the hyperball residing within the hypercube will approach 100 % \boxed{100}\text{\%} .

If you are confused be my remarks (and by the cylinders in particular), consider the case n = 3. n=3.

Thank you, Otto, for a beautiful solution!

Huan Bui - 2 years, 5 months ago

Log in to reply

@Otto Bretscher @Huan Bui

You guys have inspired me with your high-dimensional musings. Perhaps you'll get a kick out of this.

https://brilliant.org/discussions/thread/i-drew-a-tesseract-without-even-knowing-how/

Steven Chase - 2 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...