Hyperbolic Limit

Calculus Level 3

lim x sinh ( e x ) e x ! = ? \large \lim_{x\to \infty}\frac{\sinh(e^x)}{e^{x!}}=?

-\infty 0 e e \infty 1 e \frac 1e 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kyõng-min Roh
Apr 18, 2018

lim x sinh e x e x ! = lim x 1 2 ( e e x e e x ) e x ! = 1 2 lim x ( e e 2 x 1 ) e x ! + 2 e x = 1 2 ( lim x [ e 2 e x x ! 2 e x ] lim x [ e x ! 2 e x ] ) = 1 2 ( lim x [ e x ! ] lim x [ e x ! 2 e x ] ) = 1 2 ( 0 0 ) = 0 \lim_{x \to \infty} \frac { \sinh {e^x} } {e^{x!}} \\ = \lim_{x \to \infty} \frac { \frac {1} {2} \left( e^{e^x} - e^{e^{-x}} \right) } { e^{x!}} \\ = \frac{1}{2} \lim_{x \to \infty} \frac {\left( e^{e^{2x}} - 1 \right) } { e^{x! + 2e^x}} \\ = \frac {1} {2} \left( \lim_{x \to \infty} \left[ e^{2e^x - x! - 2e^x} \right] - \lim_{x \to \infty} \left[ e^{- x! - 2e^x} \right] \right) \\ = \frac {1} {2} \left( \lim_{x \to \infty} \left[ e^{-x!} \right] - \lim_{x \to \infty} \left[ e^{- x! - 2e^x} \right] \right) \\ = \frac{1}{2} \left( 0 - 0 \right) = 0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...