Hyperbolic sine times hyperbolic cosine

Calculus Level 3

If sinh 4 ( x ) cosh 5 ( x ) d x = A sinh x 128 sinh ( 3 x ) B C sinh ( 5 x ) 320 + sinh ( 7 x ) D + sinh ( 9 x ) E \displaystyle\int\sinh^4(x)\cosh^5(x)\ dx\ = \dfrac{A\sinh x}{128}-\dfrac{\sinh(3x)}{B}-\dfrac{C\sinh(5x)}{320}+\dfrac{\sinh(7x)}{D}+\dfrac{\sinh(9x)}{E} , find A + B + C + D E |A+B+C+D-E|


The answer is 316.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 28, 2018

I = sinh 4 x cosh 5 x d x = ( e x e x 2 ) 4 ( e x + e x 2 ) 5 d x Let u = e x d u = e x d x = 1 512 ( u 2 u 2 ) 4 ( u + u 1 ) d u u = 1 512 ( u 8 + u 6 4 u 4 4 u 2 + 6 + 6 u 2 4 u 4 4 x 6 + u 8 + u 10 ) d u = 1 512 ( u 9 9 + u 7 7 4 u 5 5 4 u 3 3 + 6 u 6 u 1 + 4 u 3 3 + 4 u 5 5 u 7 7 u 9 9 ) + K where K is the constant of integration. = 3 sinh x 128 sinh 3 x 192 sinh 5 x 320 + sinh 7 x 1792 + sinh 9 x 2304 + K \begin{aligned} I & = \int \sinh^4 x \cosh^5 x \ dx \\ & = \int \left(\frac {e^x - e^{-x}}2\right)^4 \left(\frac {e^x + e^{-x}}2\right)^5 dx & \small \color{#3D99F6} \text{Let }u = e^x \implies du = e^x dx \\ & = \frac 1{512} \int (u^2-u^{-2})^4(u+u^{-1}) \frac {du}u \\ & = \frac 1{512} \int \left(u^8 + u^6 - 4u^4 - 4u^2 + 6 + 6u^{-2} - 4u^{-4} - 4x^{-6} + u^{-8} + u^{-10}\right) du \\ & = \frac 1{512} \left(\frac {u^9}9 + \frac {u^7}7 - \frac {4u^5}5 - \frac {4u^3}3 +6u - 6u^{-1} + \frac {4u^{-3}}3 + \frac {4u^{-5}}5 - \frac {u^{-7}}7 - \frac {u^{-9}}9 \right) + \color{#3D99F6} K & \small \color{#3D99F6} \text{where } K \text{ is the constant of integration.} \\ & = \frac {3\sinh x}{128} - \frac {\sinh 3x}{192} - \frac {\sinh 5x}{320} + \frac {\sinh 7x}{1792} + \frac {\sinh 9x}{2304} + K \end{aligned}

Therefore, A + B + C + D E = 3 + 192 + 1 + 1792 2304 = 316 |A+B+C+D-E| = |3+192+1+1792-2304| = \boxed{316} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...