Hypergeometric, Seriously?

Calculus Level pending

n = 1 2 F 1 ( n , 1 / 4 , 3 / 4 ; 2 ) n \sum_{n=1}^{\infty}\frac{_2F_1(-n,1/4,3/4;2)}{n} 2 F 1 ( a , b , c ; z ) _2F_1(a,b,c;z) is the hypergeometric series


The answer is 2.44844547.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

2 F 1 ( a , b ; c ; z ) = Γ ( c ) Γ ( b ) Γ ( c b ) 0 1 x b 1 ( 1 x ) c b 1 ( 1 z x ) a d x \displaystyle _2F_1(a,b;c;z) = \dfrac{\Gamma{(c)}}{\Gamma{(b)}\Gamma{(c-b)} } \int_0^1 x^{b-1} (1-x)^{c-b-1} (1-zx)^{-a} dx

Matching with this ,one can tell that

n = 1 2 F 1 ( n , 1 4 ; 3 4 ; 2 ) n = Γ ( 3 4 ) Γ ( 1 2 ) Γ ( 1 4 ) 0 1 x 3 4 ( 1 x ) 1 2 n = 1 ( 1 2 x ) n n d x \displaystyle\sum_{n=1}^∞ \dfrac{_2F_1(-n,\frac{1}{4};\frac{3}{4};2)}{n} = \dfrac{\Gamma{(\frac{3}{4})}}{\Gamma{(\frac{1}{2})}\Gamma{(\frac{1}{4})}}\int_0^1 x^{-\frac{3}{4}} (1-x)^{-\frac{1}{2}} \sum_{n=1}^∞ \dfrac{(1-2x)^n}{n} dx = Γ ( 3 4 ) Γ ( 1 2 ) Γ ( 1 4 ) 0 1 x 3 4 ( 1 x ) 1 2 l o g ( 2 x ) d x = Γ ( 3 4 ) Γ ( 1 2 ) Γ ( 1 4 ) l o g ( 2 ) 0 1 x 3 4 ( 1 x ) 1 2 d x Γ ( 3 4 ) Γ ( 1 2 ) Γ ( 1 4 ) 0 1 x 3 4 ( 1 x ) 1 2 l o g ( x ) d x \displaystyle=-\frac{\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}{\:\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)}\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{-\frac{\mathrm{3}}{\mathrm{4}}} \left(\mathrm{1}-{x}\right)^{-\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{log}\:\left(\mathrm{2}{x}\right){dx} =\frac{-\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}{\:\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)}\mathrm{log}\:\left(\mathrm{2}\right)\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{-\frac{\mathrm{3}}{\mathrm{4}}} \left(\mathrm{1}-{x}\right)^{-\frac{\mathrm{1}}{\mathrm{2}}} {dx}-\frac{\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}{\:\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)}\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{-\frac{\mathrm{3}}{\mathrm{4}}} \left(\mathrm{1}-{x}\right)^{-\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{log}\left({x}\right){dx}

= Γ ( 3 4 ) Γ ( 1 2 ) Γ ( 1 4 ) l o g ( 2 ) B ( 1 4 , 1 2 ) Γ ( 3 4 ) Γ ( 1 2 ) Γ ( 1 4 ) . a a = 1 4 Γ ( a ) Γ ( 1 2 ) Γ ( a + 1 2 ) \displaystyle=-\frac{\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}{\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)}\mathrm{log}\left(\mathrm{2}\right)\boldsymbol{\mathrm{B}}\left(\frac{\mathrm{1}}{\mathrm{4}},\frac{\mathrm{1}}{\mathrm{2}}\right)-\frac{\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}{\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)}.\frac{\partial}{\partial{a}}\mid_{{a}=\frac{\mathrm{1}}{\mathrm{4}}} \frac{\Gamma\left({a}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left({a}+\frac{\mathrm{1}}{\mathrm{2}}\right)}

= Γ ( 3 4 ) l o g ( 2 ) Γ ( 1 2 ) Γ ( 1 4 ) . Γ ( 1 2 ) Γ ( 1 4 ) Γ ( 3 4 ) Γ ( 3 4 ) Γ ( 1 2 ) Γ ( 1 4 ) . ( Γ ( a ) Γ ( 1 2 ) Γ ( a + 1 2 ) Γ ( a + 1 2 ) Γ ( a ) Γ ( 1 2 ) Γ 2 ( a + 1 2 ) a = 1 4 ) \displaystyle=-\frac{\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)\mathrm{log}\:\left(\mathrm{2}\right)}{\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)}.\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}-\frac{\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}{\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)}.\left(\frac{\Gamma'\left({a}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left({a}+\frac{\mathrm{1}}{\mathrm{2}}\right)}-\frac{\Gamma'\left({a}+\frac{\mathrm{1}}{\mathrm{2}}\right)\Gamma\left({a}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma^{\mathrm{2}} \left({a}+\frac{\mathrm{1}}{\mathrm{2}}\right)}\mid_{{a}=\frac{\mathrm{1}}{\mathrm{4}}} \right)

= l o g ( 2 ) Γ ( 3 4 ) Γ ( 1 2 ) Γ ( 1 4 ) ( Γ ( 1 4 ) ψ ( 1 4 ) Γ ( 1 2 ) Γ ( 1 4 ) ψ ( 3 4 ) Γ ( 1 2 ) Γ ( 3 4 ) ) \displaystyle=-\mathrm{log}\:\left(\mathrm{2}\right)-\frac{\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}{\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)}\left(\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)\psi\left(\frac{\mathrm{1}}{\mathrm{4}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)-\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)\psi\left(\frac{\mathrm{3}}{\mathrm{4}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}\right)

= l o g ( 2 ) ( ψ ( 1 4 ) ψ ( 3 4 ) ) \displaystyle=-\mathrm{log}\:\left(\mathrm{2}\right)-\left(\psi\left(\frac{\mathrm{1}}{\mathrm{4}}\right)-\psi\left(\frac{\mathrm{3}}{\mathrm{4}}\right)\right)

Now , ψ ( 1 a ) ψ ( a ) = π cot ( π a ) \displaystyle \psi(1-a)-\psi(a)= \pi \cot(\pi a) And ψ ( 3 4 ) ψ ( 1 4 ) = π \displaystyle\psi(\frac{3}{4}) -\psi(\frac{1}{4}) = \pi

So answer is π log ( 2 ) = 2.44 \boxed{\pi-\log(2)= 2.44}

Relevant wiki

I had the same trick,you can try and generalise to higher forms hypergeometric series.

Yoihenba Laishram - 1 month, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...