Hypersphere!

Algebra Level 5

Let V n ( r ) V_n (r) be the volume of the n n -dimensional ball of radius r r . So, V 2 ( r ) = π r 2 , V 3 ( r ) = 4 3 π r 3 , V 4 ( r ) = π 2 r 4 2 , . . . . V_2(r)=\pi r^2, V_3(r)=\dfrac {4}{3}\pi r^3, V_4(r)= \dfrac{\pi^2 r^4}{2},.... \ We also set V 0 ( r ) = 1 V_0(r)=1 .

Let S = V 0 ( 1 ) + V 2 ( 1 ) + V 4 ( 1 ) + . . . . S=V_0(1)+V_2(1)+V_4(1)+. . . . \ . Find the value of S . \lfloor S \rfloor.

Notation: \lfloor \cdot \rfloor denotes the floor function .


The answer is 23.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

The volume of n n -hypersphere is given by V n ( r ) = S n r 2 n V_n(r) = \dfrac {S_nr^2}n for n 2 n \ge 2 , where S n = 2 π n / 2 Γ ( n 2 ) S_n = \dfrac {2\pi^{n/2}}{\Gamma \left(\frac n2\right)} and Γ ( ) \Gamma(\cdot) denotes the gamma function . Therefore,

S = V 0 ( 1 ) + V 2 ( 1 ) + V 4 ( 1 ) + = 1 + k = 1 S 2 k ( 1 2 ) 2 k = 1 + k = 1 π k k Γ ( k ) = 1 + k = 1 π k k ! = k = 0 π k k ! = e π \begin{aligned} S & = V_0(1) + V_2(1) + V_4(1) + \cdots \\ & = 1 + \sum_{k=1}^\infty \frac {S_{2k}(1^2)}{2k} \\ & = 1 + \sum_{k=1}^\infty \frac {\pi^k}{k\Gamma(k)} \\ & = 1 + \sum_{\color{#3D99F6}k=1}^\infty \frac {\pi^k}{k!} \\\ & = \sum_{\color{#D61F06}k=0}^\infty \frac {\pi^k}{k!} \\ & = e^\pi \end{aligned}

S = e π = 23.140... = 23 \implies \lfloor S \rfloor = \lfloor e^\pi \rfloor = \lfloor 23.140... \rfloor = \boxed{23}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...