I am back!

Calculus Level 4

π / 2 π / 2 e x cos 2 x d x \large \int_{- {\pi}/{2}}^{{\pi}/{2}} e^{x} \cos^2x \, dx Given that the integral above can be expressed as a b sinh ( c d π ) \displaystyle \frac{a}{b}\sinh \left( \frac{c}{d} \pi \right) , where a , b , c a,b,c and d d are positive integers with gcd ( a , b ) = gcd ( c , d ) = 1 \gcd(a,b) = \gcd(c,d) = 1 , find the value of a + b + c + d a+b+c+d .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Feb 14, 2016

π 2 π 2 e x cos 2 x d x = 1 2 π 2 π 2 e x ( 1 + cos ( 2 x ) ) d x = 1 2 π 2 π 2 e x d x + 1 4 π 2 π 2 e x ( e 2 x i + e 2 x i ) d x = 1 2 [ e x ] π 2 π 2 + 1 4 [ e ( 1 + 2 i ) x 1 + 2 i + e ( 1 2 i ) x 1 2 i ] π 2 π 2 = 1 2 ( e π 2 e π 2 ) + 1 4 [ e x ( e 2 x i + e 2 x i 2 i e 2 x i + 2 i e 2 x i ) 1 + 4 ] π 2 π 2 = sinh π 2 + 1 2 × 5 [ e x ( cos ( 2 x ) + 2 sin ( 2 x ) ) ] π 2 π 2 = sinh π 2 + 1 10 [ e π 2 ( cos π + 2 sin π ) e π 2 ( cos ( π ) + 2 sin ( π ) ) ] = sinh π 2 + 1 10 ( e π 2 + e π 2 ) = sinh π 2 1 5 sinh π 2 = 4 5 sinh π 2 \begin{aligned} \int_{-\frac{\pi}{2}}^\frac{\pi}{2} e^x \cos^2 x \space dx & = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^x \left(1+\cos (2x)\right) \space dx \\ & = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^x \space dx + \frac{1}{4} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^x \left(e^{2xi} + e^{-2xi} \right) \space dx \\ & = \frac{1}{2} \left[e^x\right]_{-\frac{\pi}{2}}^\frac{\pi}{2} + \frac{1}{4} \left[ \frac{e^{(1+2i)x}}{1+2i} + \frac{e^{(1-2i)x}}{1-2i} \right]_{-\frac{\pi}{2}}^\frac{\pi}{2} \\ & = \frac{1}{2} \left(e^\frac{\pi}{2} - e^{-\frac{\pi}{2}} \right) + \frac{1}{4} \left[\frac{e^x\left(e^{2xi} + e^{-2xi} - 2ie^{2xi} + 2ie^{-2xi} \right)}{1+4} \right]_{-\frac{\pi}{2}}^\frac{\pi}{2} \\ & = \sinh \frac{\pi}{2} + \frac{1}{2\times 5} \left[e^x \left(\cos (2x) +2 \sin (2x) \right) \right]_{-\frac{\pi}{2}}^\frac{\pi}{2} \\ & = \sinh \frac{\pi}{2} + \frac{1}{10} \left[e^\frac{\pi}{2} \left(\cos \pi + 2\sin \pi \right) - e^{-\frac{\pi}{2}} \left(\cos (-\pi) + 2\sin (-\pi) \right) \right] \\ & =\sinh \frac{\pi}{2} + \frac{1}{10} \left(-e^\frac{\pi}{2} + e^{-\frac{\pi}{2}} \right) \\ & =\sinh \frac{\pi}{2} - \frac{1}{5}\sinh \frac{\pi}{2} \\ & = \frac{4}{5}\sinh \frac{\pi}{2} \end{aligned}

a + b + c + d = 4 + 5 + 1 + 2 = 12 \Rightarrow a + b + c + d = 4+5+1+2 = \boxed{12}

awesome method

Hamza A - 5 years, 4 months ago

lovely exactly as intended(i solved this one by your method)

Mardokay Mosazghi - 5 years, 4 months ago

Log in to reply

Okay. Nice to know that you like it.

Chew-Seong Cheong - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...