I am Back in Brilliant!

Calculus Level 5

This problem was made when I was learning about Beta's Integral, but I forgot it somehow since I did not refresh a little bit. Hope you can still have some fun with this problem!

If the definite integral below

[ 0 1 ( 3 x 4 x 3 ) 2015 ( 1 x 2 ) 995 ( 1 4 x 2 ) 1991 d x ] 1 \left[ \int_0^1 \left(3x - 4x^3\right)^{2015} \left(1-x^2\right)^{995} \left(1-4x^2\right)^{1991} dx\right]^{-1}

When evaluated is in the form a C ( b , 995 ) a*C(b, 995) , where both a a and b b are integers; and 10000 a 13000 10000 ≤ a ≤ 13000 , what is the value of a + b a+b ?

---

P.S. C ( x , d ) C(x, d) is the Combination Operator. For example, C ( 5 , 2 ) = 5 ! 2 ! 3 ! C(5,2) = \dfrac{5!}{2!\cdot 3!} .


The answer is 14020.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Christian Daang
Jun 7, 2020

Solution:

This problem can be solved using Trig Sub, and Beta's Integral.

First step is let x = sin θ 1 x 2 = cos θ x = \sin \theta \rightarrow \sqrt{1-x^2} = \cos \theta .

This will cause the bounds to be changed: From x : [ 0 , 1 ] x: [0, 1] to θ : [ 0 , π 2 ] \theta: \left[0, \dfrac{\pi}{2}\right] .

From the first step, d x = cos θ d θ d θ = d x 1 x 2 dx = \cos \theta d\theta \Longrightarrow d\theta = \dfrac{dx}{\sqrt{1-x^2}} .

Manipulating the integrand into: 0 1 ( 3 x 4 x 3 ) 2015 [ 1 x 2 ( 1 4 x 2 ) ] 1991 d x 1 x 2 \displaystyle \int_0^1 \left(3x - 4x^3\right)^{2015} * \left[\sqrt{1-x^2}*\left(1-4x^2\right)\right]^{1991} \dfrac{dx}{\sqrt{1 - x^2}} and substituting the Trig Sub we initiate earlier:

0 π 2 ( 3 sin θ 4 sin 3 θ ) 2015 [ 1 sin 2 θ ( 1 4 sin 2 θ ) ] 1991 d θ \int_0^\frac{π}{2} \left(3\sin\theta - 4\sin^3 \theta\right)^{2015} * \left[\sqrt{1-\sin^2 \theta} * \left(1 - 4\sin^2 \theta\right)\right]^{1991} d\theta

and knowing that 3 sin θ 4 sin 3 θ = sin 3 θ 3\sin\theta - 4\sin^3 \theta = \sin 3\theta ; 1 sin 2 θ = cos θ \sqrt{1-\sin^2 \theta} = \cos\theta ; and manipulating 1 4 sin 2 θ = cos 2 θ 3 sin 2 θ 1-4\sin^2 \theta = \cos^2 \theta - 3\sin^2 \theta :

0 π 2 ( sin 3 θ ) 2015 [ cos θ ( cos 2 θ 3 sin 2 θ ) ] 1991 d θ \int_0^\frac{π}{2} \left(\sin 3\theta\right)^{2015} * \left[\cos\theta * \left(\cos^2 \theta - 3\sin^2 \theta\right)\right]^{1991} d\theta

Using the angle identity derived from De Moivre's theorem cos 3 θ 3 cos θ sin 2 θ = cos 3 θ \cos^3 \theta - 3\cos\theta\sin^2 \theta = \cos 3\theta , the integral will become:

0 π 2 ( sin 3 θ ) 2015 ( cos 3 θ ) 1991 d θ \int_0^\frac{π}{2} \left(\sin 3\theta\right)^{2015} * \left(\cos 3\theta\right)^{1991} d\theta

Now, letting u = sin 2 3 θ 1 u = cos 2 3 θ u = \sin^2 3\theta \rightarrow 1-u = \cos^2 3\theta .

This will cause again the bounds to shift from θ : [ 0 , π 2 ] \theta: \left[0, \dfrac{π}{2}\right] to u : [ 0 , 1 ] u: \left[0, 1\right] .

From there, d u = 2 sin 3 θ cos 3 θ 3 d θ = 6 u 0.5 ( 1 u ) 0.5 d θ du = 2\sin 3\theta \cos 3\theta * 3 d\theta = 6u^{0.5} \left(1-u\right)^{0.5} d\theta . Thus,

d θ = 1 6 u 0.5 ( 1 u ) 0.5 d u d\theta = \dfrac{1}{6} * u^{-0.5} * \left(1 - u\right)^{-0.5} du

The integrand will become then:

1 6 0 1 u 2015 2 ( 1 u ) 1991 2 u 0.5 ( 1 u ) 0.5 d u = 1 6 0 1 u 1007 ( 1 u ) 995 d u \dfrac{1}{6} \int_0^1 u^{\frac{2015}{2}} * \left(1 - u\right )^{\frac{1991}{2}} * u^{-0.5} * \left(1-u\right)^{-0.5} du \\ = \dfrac{1}{6} \int_0^1 u^{1007} \left(1-u\right)^{995} du

And this is an example of a beta Integral. It can be evaluated as:

1 6 ( Γ ( 1007 + 1 ) Γ ( 995 + 1 ) Γ ( 1007 + 995 + 2 ) ) = 1 6 ( 1007 ! 995 ! 2002 ! ) 1 2003 = 1 12018 C ( 2002 , 995 ) \dfrac{1}{6} \left(\dfrac{\Gamma(1007+1) * \Gamma(995+1) }{\Gamma(1007+995+2)} \right) \\ = \dfrac{1}{6} \left(\dfrac{1007! * 995!}{2002!} \right) * \dfrac{1}{2003} \\ = \dfrac{1}{12018*C(2002, 995)}

Hence, the expression in the problem above is equivalent to: 12018 C ( 2002 , 995 ) \displaystyle \boxed{12018*C(2002, 995)}

And therefore, a + b = 12018 + 2002 = 14020 a + b = 12018 + 2002 = \boxed{14020} .

Note that this solution is not unique because, for example, 12018 C(2002, 995) = 6048 C(2003, 995). Other solutions are also possible.

Jack McMath - 1 year ago

Ohhhh, I get your point. I think, I can add the statement 10000 a 13000 10000 ≤ a ≤ 13000 right? So that, this will become the only possible solution? ~

Christian Daang - 1 year ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...