"I am back" says Integration - Part 2

Calculus Level 5

cos ( 2 x ) sin ( x ) d x \large \int \frac{\sqrt{\cos(2x)}}{\sin(x)} \, dx

If the integral above can be expressed as a log ( b cos x + cos ( c x ) ) log ( d cot x + ( ( cot x ) e g ) f ) \sqrt{a}\log(\sqrt{b}\cos{x} + \sqrt{\cos(cx)}) - \log(d\cot{x} + ((\cot{x})^e - g)^f) , for constants a , b , c , d , e , g a,b,c,d,e,g and f f , evaluate a b c d g + e f + 11 \frac{abc}{dg} + ef + 11 .

Note: f f is not an integer. And all these constants may not be distinct.


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Singhal
Aug 19, 2015

Let I = c o s ( 2 x ) s i n x d x = c o s ( 2 x ) s i n x c o s ( 2 x ) d x = 1 2 sin 2 x s i n x c o s ( 2 x ) d x = 1 s i n x cos 2 x sin 2 x d x 2 s i n x 2 cos 2 x 1 d x = csc 2 x cot 2 x 1 d x 2 2 s i n x cos 2 x 1 d x = d t t 2 1 2 d s s 2 ( 1 2 ) 2 w h e r e t = c o t x a n d s = c o s x ; = ln t + t 2 1 + 2 ln 2 s + 2 s 2 1 ] = 2 log ( 2 cos x + cos ( 2 x ) ) log ( cot x + cot 2 x 1 ) I=\int { \frac { \sqrt { cos(2x) } }{ sinx } dx\quad } =\int { \frac { cos(2x) }{ sinx\sqrt { cos(2x) } } } dx =\int { \frac { 1-2\sin ^{ 2 }{ x } }{ sinx\sqrt { cos(2x) } } } dx =\int { \frac { 1 }{ sinx\sqrt { \cos ^{ 2 }{ x } -\sin ^{ 2 }{ x } } } dx\quad -2\int { \frac { sinx }{ \sqrt { 2\cos ^{ 2 }{ x } -1 } } dx } } =\int { \frac { \csc ^{ 2 }{ x } }{ \sqrt { \cot ^{ 2 }{ x\quad -1 } } } dx\quad -\frac { 2 }{ \sqrt { 2 } } } \int { \frac { sinx }{ \sqrt { \cos ^{ 2 }{ x } -1 } } dx } =-\int { \frac { dt }{ \sqrt { { t }^{ 2 }-1 } } } -\sqrt { 2 } \int { \frac { -ds }{ \sqrt { { s }^{ 2 }-(\frac { 1 }{ \sqrt { 2 } } )^{ 2 } } } } \quad where\quad t=cotx\quad and\quad s=cosx ; =-\ln { \left| t+\sqrt { t^{ 2 }-1 } \right| } +\sqrt { 2 } \ln { \left| \sqrt { 2 } s\quad +\sqrt { 2s^{ 2 }-1 } \right| } ] = \sqrt{2}\log(\sqrt{2}\cos{x} + \sqrt{\cos(2x)}) - \log(\cot{x} + \sqrt{\cot^2{x} - 1})

Rajdeep Dhingra
Feb 24, 2015

The answer is I = 2 log ( 2 cos x + cos ( 2 x ) ) log ( cot x + cot 2 x 1 ) I = \sqrt{2}\log(\sqrt{2}\cos{x} + \sqrt{\cos(2x)}) - \log(\cot{x} + \sqrt{\cot^2{x} - 1})

Moderator note:

Can you provide a proper solution?

We would be much more interested to know how you solved it..

Ayush Garg - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...