Integration of a Substitute

Calculus Level 2

If f ( 3 x 4 3 x + 4 ) = x + 2 f\left( \frac{3x-4}{3x+4} \right) = x + 2 , then what is the antiderivative of f ( x ) f(x) ?

Clarification: Take C C as an arbitrary constant.

e x + 2 ln ( 3 x 4 3 x + 4 ) + C e^{x+2} \ln(\frac{3x - 4}{3x + 4}) + C e x 2 ln ( 3 x 4 3 x + 4 ) + C e^{x-2} \ln(\frac{3x - 4}{3x + 4}) + C 8 3 ln ( x 1 ) + 2 x 3 + C \frac{-8}{3}\ln(x-1) + \frac{2x}{3} + C None of these choices e 3 x 4 3 x + 4 x 2 2 + C e^{\frac{3x - 4}{3x + 4}} - \frac{x^2}{2} + C 8 3 ln ( x 1 ) + 2 x 3 + C \frac{8}{3}\ln(x-1) + \frac{2x}{3} + C e 3 x + 4 3 x 4 x 2 2 + C e^{\frac{3x + 4}{3x - 4}} - \frac{x^2}{2} + C

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

What matters the most here is the conversion of f ( 3 x 4 3 x + 4 ) f(\dfrac{3x-4}{3x+4}) to f ( x ) f(x)

So let us take t = 3 x 4 3 x + 4 t = \dfrac{3x-4}{3x+4}

3 x t + 4 t = 3 x 4 4 t + 4 3 3 t = x 3xt + 4t = 3x - 4 \Rightarrow \dfrac{4t + 4}{3-3t} = x

f ( t ) = 4 t + 4 3 3 t + 2 = 10 2 t 3 3 t = 2 t 10 3 t 3 \Rightarrow f(t) = \dfrac{4t+4}{3-3t} + 2 = \dfrac{10 - 2t}{3 - 3t} = \dfrac{2t - 10}{3t - 3}

f ( x ) = 2 x 10 3 x 3 \Rightarrow f(x) = \dfrac{2x - 10}{3x - 3}

Now that the transformation is complete, the anti-derivative is nothing but the integral

f ( x ) d x = 2 x 10 3 x 3 d x = 2 x 2 3 x 3 d x + 8 3 x 3 d x \displaystyle \int f(x) dx = \int \dfrac{2x - 10}{3x - 3} dx = \int \dfrac{2x-2}{3x-3} dx + \int \dfrac{-8}{3x-3} dx

f ( x ) d x = 2 x 3 + c 1 + 8 3 ln ( x 1 ) + c 2 \int f(x) dx = \dfrac{2x}{3} + c_1 + \dfrac{-8}{3}\ln(x-1) + c_2

f ( x ) d x = 2 x 3 + 8 3 ln ( x 1 ) + C \int f(x) dx = \dfrac{2x}{3} + \dfrac{-8}{3}\ln(x-1) + C

Nice question :)

saharsh rathi - 4 years, 8 months ago

Nice method of solving....!!!

Vishal Dbhat - 3 years, 6 months ago

Very nice method of solving

Vasant Halpet - 2 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...